// Numbas version: finer_feedback_settings {"name": "Pelle's copy of Ashley's copy of Andrew's copy of Matrices: Cramers Rule 3x3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"css": "", "js": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["matrixA", "a11", "a12", "a21", "a22", "a13", "a23", "a31", "a32", "a33", "x1", "x2", "x3", "c1", "c2", "c3"], "variable_groups": [{"variables": ["matrixA1", "matrixA2", "matrixA3"], "name": "Cramer determinants"}], "variables": {"a31": {"group": "Ungrouped variables", "description": "", "definition": "random(0..10)", "templateType": "anything", "name": "a31"}, "a32": {"group": "Ungrouped variables", "description": "", "definition": "random(0..10)", "templateType": "anything", "name": "a32"}, "a21": {"group": "Ungrouped variables", "description": "", "definition": "random(0..10)", "templateType": "anything", "name": "a21"}, "a23": {"group": "Ungrouped variables", "description": "", "definition": "random(0..10)", "templateType": "anything", "name": "a23"}, "matrixA1": {"group": "Cramer determinants", "description": "", "definition": "matrix([c1,a12,a13],[c2,a22,a23],[c3,a32,a33])", "templateType": "anything", "name": "matrixA1"}, "a12": {"group": "Ungrouped variables", "description": "", "definition": "random(0..10)", "templateType": "anything", "name": "a12"}, "c2": {"group": "Ungrouped variables", "description": "", "definition": "a21*x1+a22*x2+a23*x3", "templateType": "anything", "name": "c2"}, "x2": {"group": "Ungrouped variables", "description": "", "definition": "random(-10..10 except 0)", "templateType": "anything", "name": "x2"}, "x1": {"group": "Ungrouped variables", "description": "", "definition": "random(-10..10 except 0)", "templateType": "anything", "name": "x1"}, "c1": {"group": "Ungrouped variables", "description": "", "definition": "a11*x1+a12*x2+a13*x3", "templateType": "anything", "name": "c1"}, "a33": {"group": "Ungrouped variables", "description": "", "definition": "random(0..10)", "templateType": "anything", "name": "a33"}, "a11": {"group": "Ungrouped variables", "description": "", "definition": "random(0..10)", "templateType": "anything", "name": "a11"}, "c3": {"group": "Ungrouped variables", "description": "", "definition": "a31*x1+a32*x2+a33*x3", "templateType": "anything", "name": "c3"}, "matrixA3": {"group": "Cramer determinants", "description": "", "definition": "matrix([a11,a12,c1],[a21,a22,c2],[a31,a32,c3])", "templateType": "anything", "name": "matrixA3"}, "a13": {"group": "Ungrouped variables", "description": "", "definition": "random(0..10)", "templateType": "anything", "name": "a13"}, "x3": {"group": "Ungrouped variables", "description": "", "definition": "random(-10..10 except 0)", "templateType": "anything", "name": "x3"}, "a22": {"group": "Ungrouped variables", "description": "", "definition": "random(0..10 except(a21*a12/a11))", "templateType": "anything", "name": "a22"}, "matrixA2": {"group": "Cramer determinants", "description": "", "definition": "matrix([a11,c1,a13],[a21,c2,a23],[a31,c3,a33])", "templateType": "anything", "name": "matrixA2"}, "matrixA": {"group": "Ungrouped variables", "description": "", "definition": "matrix([a11,a12,a13],[a21,a22,a23],[a31,a32,a33])", "templateType": "anything", "name": "matrixA"}}, "tags": [], "extensions": [], "statement": "

Using Cramer's rule , solve the system of equations:

\n

$\\var{a11}x+\\var{a12}y+\\var{a13}z=\\var{c1}$

\n

$\\var{a21}x+\\var{a22}y+\\var{a23}z=\\var{c2}$

\n

$\\var{a31}x+\\var{a32}y+\\var{a33}z=\\var{c3}$

\n

\n

", "rulesets": {}, "parts": [{"type": "gapfill", "scripts": {}, "showFeedbackIcon": true, "gaps": [{"mustBeReducedPC": 0, "scripts": {}, "correctAnswerStyle": "plain", "allowFractions": false, "marks": 1, "correctAnswerFraction": false, "maxValue": "det(matrixA)", "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showCorrectAnswer": true, "minValue": "det(matrixA)", "notationStyles": ["plain", "en", "si-en"]}], "variableReplacementStrategy": "originalfirst", "prompt": "

What is the determinant of A=$\\var{matrixA}$?

\n

[[0]]

", "variableReplacements": [], "marks": 0, "showCorrectAnswer": true}, {"type": "gapfill", "scripts": {}, "showFeedbackIcon": true, "gaps": [{"mustBeReducedPC": 0, "scripts": {}, "correctAnswerStyle": "plain", "allowFractions": false, "marks": 1, "correctAnswerFraction": false, "maxValue": "det(matrixA1)", "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showCorrectAnswer": true, "minValue": "det(matrixA1)", "notationStyles": ["plain", "en", "si-en"]}, {"mustBeReducedPC": 0, "scripts": {}, "correctAnswerStyle": "plain", "allowFractions": false, "marks": 1, "correctAnswerFraction": false, "maxValue": "{x1}", "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showCorrectAnswer": true, "minValue": "{x1}", "notationStyles": ["plain", "en", "si-en"]}], "variableReplacementStrategy": "originalfirst", "prompt": "

Calculate $\\Delta_1$ [[0]]

\n

Hence, calculate ${x_1}$  [[1]]

", "variableReplacements": [], "marks": 0, "showCorrectAnswer": true}, {"type": "gapfill", "scripts": {}, "showFeedbackIcon": true, "gaps": [{"mustBeReducedPC": 0, "scripts": {}, "correctAnswerStyle": "plain", "allowFractions": false, "marks": 1, "correctAnswerFraction": false, "maxValue": "det(matrixA2)", "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showCorrectAnswer": true, "minValue": "det(matrixA2)", "notationStyles": ["plain", "en", "si-en"]}, {"mustBeReducedPC": 0, "scripts": {}, "correctAnswerStyle": "plain", "allowFractions": false, "marks": 1, "correctAnswerFraction": false, "maxValue": "{x2}", "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showCorrectAnswer": true, "minValue": "{x2}", "notationStyles": ["plain", "en", "si-en"]}], "variableReplacementStrategy": "originalfirst", "prompt": "

Calculate $\\Delta_2$[[0]]

\n

Hence, calculate ${y}$  [[1]]

", "variableReplacements": [], "marks": 0, "showCorrectAnswer": true}, {"type": "gapfill", "scripts": {}, "showFeedbackIcon": true, "gaps": [{"mustBeReducedPC": 0, "scripts": {}, "correctAnswerStyle": "plain", "allowFractions": false, "marks": 1, "correctAnswerFraction": false, "maxValue": "det(matrixA3)", "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showCorrectAnswer": true, "minValue": "det(matrixA3)", "notationStyles": ["plain", "en", "si-en"]}, {"mustBeReducedPC": 0, "scripts": {}, "correctAnswerStyle": "plain", "allowFractions": false, "marks": 1, "correctAnswerFraction": false, "maxValue": "{x3}", "showFeedbackIcon": true, "variableReplacements": [], "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "showCorrectAnswer": true, "minValue": "{x3}", "notationStyles": ["plain", "en", "si-en"]}], "variableReplacementStrategy": "originalfirst", "prompt": "

Calculate $\\Delta_3$[[0]]

\n

Hence, calculate ${z}$  [[1]]

", "variableReplacements": [], "marks": 0, "showCorrectAnswer": true}], "advice": "

If \\[  A=\\left( \\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\\\a_{21} & a_{22} & a_{23}\\\\ a_{31} & a_{32} & a_{33}\\end{array} \\right),\\]

\n

\\[  C=\\left( \\begin{array}{ccc}
c_{1} \\\\ c_{2} \\\\c_{3} \\end{array} \\right),\\]

\n

Cramer's Rule : ${x_1}=\\frac{\\Delta_1}{\\Delta_0}$ ,  ${x_2}=\\frac{\\Delta_2}{\\Delta_0}$ , ${x_3}=\\frac{\\Delta_3}{\\Delta_0}$

\n

Where:\\[ \\Delta_0=\\left| \\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\\\a_{21} & a_{22} & a_{23}\\\\ a_{31} & a_{32} & a_{33}\\end{array} \\right|\\]

\n

\\[ \\Delta_1=\\left| \\begin{array}{ccc}
c_{1} & a_{12} & a_{13} \\\\c_{2} & a_{22} & a_{23}\\\\ c_{3} & a_{32} & a_{33}\\end{array} \\right|\\]

\n

\\[ \\Delta_2=\\left| \\begin{array}{ccc}
a_{11} & c_{1} & a_{13} \\\\a_{21} & c_{2} & a_{23}\\\\ a_{31} & c_{3} & a_{33}\\end{array} \\right|\\]

\n

\\[ \\Delta_3=\\left| \\begin{array}{ccc}
a_{11} & a_{12} & c_{1} \\\\a_{21} & a_{22} & c_{2}\\\\ a_{31} & a_{32} & c_{3}\\end{array} \\right|\\]

\n

 

\n

 

\n

 

\n

", "name": "Pelle's copy of Ashley's copy of Andrew's copy of Matrices: Cramers Rule 3x3", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Cramers Rule applied to 3 simultaneous equations

"}, "functions": {}, "type": "question", "contributors": [{"name": "Pelle Englund", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2073/"}]}]}], "contributors": [{"name": "Pelle Englund", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2073/"}]}