// Numbas version: finer_feedback_settings {"name": "Ecuaci\u00f3n Radical reducible a Cuadr\u00e1tica .jk", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Shows how to define variables to stop degenerate examples.

"}, "ungrouped_variables": ["a", "b"], "variablesTest": {"maxRuns": 100, "condition": ""}, "name": "Ecuaci\u00f3n Radical reducible a Cuadr\u00e1tica .jk", "variables": {"b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9 except -a)", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..-2)", "description": "", "name": "a"}}, "advice": "

Elevemos ambos lados de la igualdad al cuadrado. No olvide que cuando se eleva al cuadrado, en ocasiones pueden aparecer soluciones extrañas. Por eso es muy importante verificar que las soluciones encontradas satisfacen la ecuación inicial.

\n

\\begin{align}
\\simplify[std]{x-{a/2}}&=\\sqrt{\\simplify[std]{{b}x-{a*b}+{(a/2)^2}}} \\\\\\\\
\\left(\\simplify[std]{x-{a/2}}\\right)^2&=\\left(\\sqrt{\\simplify[std]{{b}x-{a*b}+{(a/2)^2}}}\\right)^2
\\end{align}

\n

Desarrollando y ordenando:

\n

\\begin{align}
\\simplify[std]{x^2-{a}x+{(a/2)^2}}&=\\simplify[std]{{b}x-{a*b}+{(a/2)^2}}\\\\\\\\
\\simplify[std]{x^2-{a+b}x+{a*b}}&=\\simplify[std]{0}
\\end{align}

\n

Factoricemos y resolvamos:

\n

\\begin{align}
(\\simplify{(x-{a})})(\\simplify{x-{b}})=&\\simplify{0}
\\end{align}

\n

\\[\\simplify{(x-{a}={0})} \\,\\,\\,\\,;\\,\\,\\, \\simplify{(x-{b}={0})} \\]

\n

\\[\\simplify{x_1={a}} \\,\\,\\,\\,;\\,\\,\\, \\simplify{(x_2={b})}\\]

\n

\n

Verificando las soluciones encontradas $\\,\\,\\simplify{x_1={a}}\\,\\,\\,$ y $\\,\\,\\,\\simplify{x_2={b}}\\,\\,$ en la ecuación inicial, nos quedamos con $\\simplify{x_2={b}}$, ya que ella la satisface.

\n

La solución de la ecuación es:

\n

\\[\\simplify{(x_2={b})}\\]

", "parts": [{"prompt": "

Ingrese su respuesta como un número entero o bien una fracción.

\n

$x=$ [[0]] 

\n

\n

", "marks": 0, "gaps": [{"answer": "{b}", "checkingtype": "absdiff", "vsetrange": [0, 1], "variableReplacements": [], "expectedvariablenames": [], "notallowed": {"message": "

Input your answer as a fraction and not a decimal.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "checkvariablenames": false, "variableReplacementStrategy": "originalfirst", "checkingaccuracy": 0.001, "showpreview": true, "marks": 1, "vsetrangepoints": 5, "showFeedbackIcon": true, "scripts": {}, "answersimplification": "Std", "type": "jme", "showCorrectAnswer": true}], "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showCorrectAnswer": true}], "tags": [], "functions": {}, "statement": "

Resolver el siguiente ecuación:

\n

\\[\\begin{eqnarray*}\\simplify[std]{x-{a/2}}&=&\\sqrt{\\simplify[std]{{b}x-{a*b}+{(a/2)^2}}}\\end{eqnarray*}\\]

\n

", "preamble": {"css": "", "js": ""}, "extensions": [], "variable_groups": [{"variables": [], "name": "Unnamed group"}], "rulesets": {"std": ["All", "fractionnumbers"]}, "type": "question", "contributors": [{"name": "Jos Klenner", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/84/"}]}]}], "contributors": [{"name": "Jos Klenner", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/84/"}]}