// Numbas version: finer_feedback_settings
{"name": "Bernard's copy of Solving exponential equations using logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"prompt": "
Solve the following equation for $n$
\n$\\displaystyle{\\simplify{{a}={p}({b})^(n/{d})+{c}}}.$
\n\n$n=$ [[0]]
\n
\nNote: Typing $\\log(5)$ will input the value $\\log_{10}(5)$, whereas $\\log5$ will not work.
Note: Typing $\\ln(5)$ will input the value $\\log_e(5)$, whereas $\\ln5$ will not work.
", "gaps": [{"expectedvariablenames": [], "vsetrange": [0, 1], "marks": 1, "checkingaccuracy": 0.001, "variableReplacements": [], "type": "jme", "showFeedbackIcon": true, "showpreview": true, "checkvariablenames": false, "scripts": {}, "checkingtype": "absdiff", "showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "answer": "{d}*log({frac})/log({b})"}], "variableReplacements": [], "steps": [{"prompt": "We start solving the equation one operation at a time by doing the inverse to both sides, when we get to undoing the exponential we apply a log to both sides, we then use a log law and continue solving.
\n\n\n\n\n$\\var{a}$ | \n$=$ | \n$\\simplify{{p}({b})^(n/{d})+{c}}$ | \n | \n
\n\n$\\simplify{{a-c}}$ | \n$=$ | \n$\\simplify{{p}({b})^(n/{d})}$ | \n(subtract $\\var{c}$ from both sides) | \n
\n\n$\\var{frac}$ | \n$=$ | \n$\\simplify{{b}^(n/{d})}$ | \n(divide both sides by $\\var{p}$) | \n
\n\n$\\log(\\var{frac})$ | \n$=$ | \n$\\log(\\var{b}^{\\frac{n}{\\var{d}}})$ | \n(take the log of both sides) | \n
\n\n | \n$=$ | \n$\\frac{n}{\\var{d}}\\log(\\var{b})$ | \n(use a log law) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\frac{\\log(\\var{frac})}{\\log(\\var{b})}}$ | \n$=$ | \n$\\frac{n}{\\var{d}}$ | \n(divide both sides by $\\log(\\var{b})$) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\frac{\\var{d}\\log(\\var{frac})}{\\log(\\var{b})}}$ | \n$=$ | \n$n$ | \n(multiply both sides by $\\var{d}$) | \n
\n\n
\n", "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "showCorrectAnswer": true, "marks": 0, "type": "information", "variableReplacementStrategy": "originalfirst"}], "variableReplacementStrategy": "originalfirst", "scripts": {}, "showCorrectAnswer": true, "stepsPenalty": "1", "type": "gapfill", "marks": 0, "showFeedbackIcon": true}, {"prompt": "Solve the following equation for $n$
\n$\\displaystyle{\\simplify{{FV}={pay}((1+{int})^n-1)/{int}}}.$
\n\n$n=$ [[0]]
\n
\nNote: Typing $\\log(5)$ will input the value $\\log_{10}(5)$, whereas $\\log5$ will not work.
Note: Typing $\\ln(5)$ will input the value $\\log_e(5)$, whereas $\\ln5$ will not work.
", "gaps": [{"answersimplification": "simplifyFractions", "expectedvariablenames": [], "vsetrange": [0, 1], "marks": 1, "checkingaccuracy": 0.001, "variableReplacements": [], "type": "jme", "showFeedbackIcon": true, "showpreview": true, "checkvariablenames": false, "scripts": {}, "checkingtype": "absdiff", "showCorrectAnswer": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "answer": "log({FV*int+pay}/{pay})/log({1+int})"}], "variableReplacements": [], "steps": [{"prompt": "We start solving the equation one operation at a time by doing the inverse to both sides, when we get to undoing the exponential we apply a log to both sides, we then use a log law and continue solving.
\n\n\n\n\n${\\var{FV}}$ | \n$=$ | \n$\\displaystyle{\\simplify{{pay}((1+{int})^n-1)/{int}}}$ | \n | \n
\n\n$\\simplify{{FV*int}}$ | \n$=$ | \n$\\displaystyle{\\simplify{{pay}((1+{int})^n-1)}}$ | \n(multiply both sides by $\\var{int}$) | \n
\n\n$\\displaystyle{\\simplify[simplifyFractions]{{FV*int}/{pay}}}$ | \n$=$ | \n$\\displaystyle{\\simplify{(1+{int})^n-1}}$ | \n(divide both sides by $\\var{pay}$) | \n
\n\n$\\displaystyle{\\simplify[simplifyFractions]{{FV*int}/{pay}+1}}$ | \n$=$ | \n$\\displaystyle{\\simplify{(1+{int})^n}}$ | \n(add $1$ to both sides) | \n
\n\n$\\displaystyle{\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}}$ | \n$=$ | \n$\\displaystyle{\\simplify{(1+{int})^n}}$ | \n(tidy up left hand side) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\log\\left(\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}\\right)}$ | \n$=$ | \n$\\displaystyle{\\log\\left((\\var{1+int})^n\\right)}$ | \n(take the log of both sides) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\log\\left(\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}\\right)}$ | \n$=$ | \n$\\displaystyle{n\\log(\\var{1+int})}$ | \n(use a log law) | \n
\n\n | \n | \n | \n | \n
\n\n$\\displaystyle{\\frac{\\log\\left(\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}\\right)}{\\log(\\var{1+int})}}$ | \n$=$ | \n$n$ | \n(divide both sides by $\\log(\\var{1+int})$) | \n
\n\n
\n", "variableReplacements": [], "showFeedbackIcon": true, "scripts": {}, "showCorrectAnswer": true, "marks": 0, "type": "information", "variableReplacementStrategy": "originalfirst"}], "variableReplacementStrategy": "originalfirst", "scripts": {}, "showCorrectAnswer": true, "stepsPenalty": "1", "type": "gapfill", "marks": 0, "showFeedbackIcon": true}], "preamble": {"css": "", "js": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"logfrac": {"name": "logfrac", "description": "", "definition": "log(frac)", "group": "Ungrouped variables", "templateType": "anything"}, "int": {"name": "int", "description": "", "definition": "random(0.01..0.10#0.01)", "group": "b", "templateType": "anything"}, "p": {"name": "p", "description": "", "definition": "random(2,5,10,20,(a-c)/2,(a-c)/5,(a-c)/10,(a-c)/20)", "group": "Ungrouped variables", "templateType": "anything"}, "logb": {"name": "logb", "description": "", "definition": "log(b)", "group": "Ungrouped variables", "templateType": "anything"}, "c": {"name": "c", "description": "", "definition": "random(20..a-10#20)", "group": "Ungrouped variables", "templateType": "anything"}, "amc": {"name": "amc", "description": "", "definition": "a-c", "group": "Ungrouped variables", "templateType": "anything"}, "d": {"name": "d", "description": "", "definition": "random(2,4,3,12,26,52)", "group": "Ungrouped variables", "templateType": "anything"}, "FV": {"name": "FV", "description": "", "definition": "random(20000..100000#500)", "group": "b", "templateType": "anything"}, "periods": {"name": "periods", "description": "", "definition": "log(FV*int/pay+1)/log(1+int)", "group": "b", "templateType": "anything"}, "frac": {"name": "frac", "description": "", "definition": "(a-c)/p", "group": "Ungrouped variables", "templateType": "anything"}, "pay": {"name": "pay", "description": "", "definition": "random(100..2000#100)", "group": "b", "templateType": "anything"}, "n": {"name": "n", "description": "", "definition": "d*logfrac/logb", "group": "Ungrouped variables", "templateType": "anything"}, "b": {"name": "b", "description": "", "definition": "random(1.05..1.5#0.05)", "group": "Ungrouped variables", "templateType": "anything"}, "a": {"name": "a", "description": "", "definition": "random(1000..2000#20)", "group": "Ungrouped variables", "templateType": "anything"}, "test": {"name": "test", "description": "", "definition": "fv*int/pay", "group": "b", "templateType": "anything"}}, "advice": "", "extensions": [], "functions": {}, "statement": "", "variable_groups": [{"name": "b", "variables": ["FV", "pay", "int", "periods", "test"]}], "tags": ["exp", "exponential", "exponentials", "logarithm", "logarithms", "logs", "solving", "Solving equations", "solving equations"], "ungrouped_variables": ["a", "p", "c", "b", "frac", "logfrac", "logb", "d", "amc", "n"], "name": "Bernard's copy of Solving exponential equations using logs", "rulesets": {}, "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "type": "question", "contributors": [{"name": "Bernard Enright", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2167/"}]}]}], "contributors": [{"name": "Bernard Enright", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2167/"}]}