// Numbas version: exam_results_page_options {"name": "Stephen's copy of Inverse of a 3x3 matrix using row operations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"k": {"description": "", "definition": "random(2..4#1)", "group": "Ungrouped variables", "name": "k", "templateType": "randrange"}, "a13": {"description": "", "definition": "random(0..4#1)", "group": "Ungrouped variables", "name": "a13", "templateType": "randrange"}, "a31": {"description": "", "definition": "k1*a11", "group": "Ungrouped variables", "name": "a31", "templateType": "anything"}, "k1": {"description": "", "definition": "random(2..4#1)", "group": "Ungrouped variables", "name": "k1", "templateType": "randrange"}, "k2": {"description": "", "definition": "{a13}-{a12}*({a23}-{k}*{a13})", "group": "Ungrouped variables", "name": "k2", "templateType": "anything"}, "a22": {"description": "", "definition": "k*a12+1", "group": "Ungrouped variables", "name": "a22", "templateType": "anything"}, "a23": {"description": "", "definition": "random(1..5#1)", "group": "Ungrouped variables", "name": "a23", "templateType": "randrange"}, "a11": {"description": "", "definition": "random(1,2,10)", "group": "Ungrouped variables", "name": "a11", "templateType": "anything"}, "a33": {"description": "

3x33 matrix with determinant = a11

", "definition": "{k1}*({a23}+{a13}-{k}*{a13})+1", "group": "Ungrouped variables", "name": "a33", "templateType": "anything"}, "a12": {"description": "", "definition": "random(2..5#1)", "group": "Ungrouped variables", "name": "a12", "templateType": "randrange"}, "a21": {"description": "", "definition": "k*a11", "group": "Ungrouped variables", "name": "a21", "templateType": "anything"}, "k3": {"description": "", "definition": "{a23}-{k}*{a13}", "group": "Ungrouped variables", "name": "k3", "templateType": "anything"}, "a32": {"description": "", "definition": "k1*(a12+1)", "group": "Ungrouped variables", "name": "a32", "templateType": "anything"}}, "functions": {}, "preamble": {"css": "", "js": ""}, "variable_groups": [], "ungrouped_variables": ["a11", "a12", "a13", "k", "a21", "a22", "a23", "k1", "a31", "a32", "a33", "k2", "k3"], "tags": [], "advice": "

The correct row operations in the first iteration are

\n

new row2 = old row2- \$$\\var{k}*\$$row1

\n

new row3 = old row3- \$$\\var{k1}*\$$row1

\n

\n

The correct row operations in the second iteration are

\n

new row1 = old row1 - \$$\\var{a12}*\$$row2

\n

new row3 = old row3 - \$$\\simplify{{a32}-{k1}*{a12}}*\$$row2

\n

\n

The correct row operations in the third iteration are

\n

new row1 = old row1 - \$$\\simplify{{a13}-{a12}*({a23}-{k}*{a13})}*\$$row3

\n

new row2 = old row2 \$$-(\\simplify{{a23}-{k}*{a13}})*\$$row3

\n

\n

", "parts": [{"scripts": {}, "prompt": "

First set up the augmented matrix:

\n

\$$\\left(\\begin{array}{rrr|ccc} \\var{a11}&\\var{a12}&\\var{a13}&\\var{1}&\\var{0}&\\var{0}\\\\\\var{a21}&\\var{a22}&\\var{a23}&\\var{0}&\\var{1}&\\var{0}\\\\\\var{a31}&\\var{a32}&\\var{a33}&\\var{0}&\\var{0}&\\var{1}\\\\\\end{array}\\right)\$$

\n

Use appropriate row operations to get zeroes below the diagonal in the first column:

\n

\$$\\left(\\begin{array}{rrr|ccc} \\var{a11}&\\var{a12}&\\var{a13}&\\var{1}&\\var{0}&\\var{0}\\\\0&1&?&?&?&?\\\\0&?&?&?&?&?\\\\\\end{array}\\right)\$$ =  [[0]]

\n

Taking this matrix apply the appropriate row operations to get zeroes above and below the diagonal in column 2 as shown below:

\n

\$$\\left(\\begin{array}{rrr|ccc} \\var{a11}&0&?&\\var{1}&?&?\\\\0&1&?&?&?&?\\\\0&0&?&?&?&?\\\\\\end{array}\\right)\$$ = [[1]]

\n

Next take this matrix and apply the appropriate row operations to get zeroes above the diagonal in column 3 as shown below:

\n

\$$\\left(\\begin{array}{rrr|ccc} \\var{a11}&0&0&?&?&?\\\\0&1&0&?&?&?\\\\0&0&1&?&?&?\\\\\\end{array}\\right)\$$ = [[2]]

\n

By carrying out one final row operation input all the entries in \$$A^{-1}\$$, correct to two decimal places.

\n

\$$A^{-1}\$$ = [[3]]

This question asks learners to use row operations to find the inverse of a 3x3 matrix.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Find the inverse of the matrix A by applying row operations:

\n

\$$\\mathbf{A}=\\begin{pmatrix} \\var{a11}&\\var{a12}&\\var{a13}\\\\ \\var{a21}&\\var{a22}&\\var{a23}\\\\\\var{a31}&\\var{a32}&\\var{a33} \\end{pmatrix}\$$

\n

", "type": "question", "contributors": [{"name": "Stephen Flood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1397/"}]}]}], "contributors": [{"name": "Stephen Flood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1397/"}]}