// Numbas version: exam_results_page_options {"name": "Stephen's copy of (CLP's) Inverse Matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Stephen's copy of (CLP's) Inverse Matrix", "tags": [], "metadata": {"description": "

$A$ a $3 \\times 3$ matrix. Using row operations on the augmented matrix $\\left(A | I_3\\right)$ reduce to $\\left(I_3 | A^{-1}\\right)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Find the inverse of the following matrix:
\\[ \\simplify{matrix:A = {a}} \\]

\n

Form the $3 \\times 6$ augmented matrix $\\mathrm{B}$ by placing $I_3$ to the right of $\\mathrm{A}$ as below:

\n

\\[\\mathrm{B} = \\left(\\begin{array}{rrr|ccc} \\var{a[0][0]} & \\var{a[0][1]} & \\var{a[0][2]} &\\var{1}&\\var{0}&\\var{0}\\\\ \\var{a[1][0]} & \\var{a[1][1]} & \\var{a[1][2]}&\\var{0}&\\var{1}&\\var{0}\\\\ \\var{a[2][0]} & \\var{a[2][1]} & \\var{a[2][2]}&\\var{0}&\\var{0}&\\var{1}\\\\ \\end{array}\\right)\\]

\n

In subsequent parts work with this matrix using row operations to introduce the identity matrix on the left hand side, with the inverse of $\\mathrm{A}$ eventually appearing on the right hand side.

\n

Enter all numbers as fractions or integers, and not as decimals.

", "advice": "

a) Introduce zeros in the first column

\n

The first entry in the second row is $\\var{a[1][0]}$, and we have a $1$ in the first entry of the first row, so multiply the first row by $\\var{abs(zero_2_1)}$ and {if(zero_2_1<0,'subtract from','add to')} row 2 to get

\n

\\[ \\simplify[rowvector,all]{{step0[1]}+{zero_2_1}*{step0[0]} = {step1[1]}} \\]

\n

The first entry in the third row is $\\var{a[2][0]}$, so multiply the first row by $\\var{abs(zero_3_1)}$ and {if(zero_3_1<0,'subtract from','add to')} row 3 to get

\n

\\[ \\simplify[rowvector,all]{{step0[2]}+{zero_3_1}*{step0[0]} = {step1[2]}} \\]

\n

The matrix at this stage is

\n

\\[ \\var{step1} \\]

\n

b) Introduce a zero in the second column of the third row

\n

The second entry in the third row is $\\var{step1[2][1]}$, and we have a $1$ in the second entry of the second row, so multiply the second row by $\\var{abs(zero_3_2)}$ and {if(zero_3_2<0,'subtract from','add to')} row 3 to get

\n

\\[ \\simplify[rowvector,all]{{step1[2]}+{zero_3_2}*{step1[1]} = {step1[2]+zero_3_2*step1[1]}} \\]

\n

{if(one_3_3<>1,one_3_3_message,'')}

\n

The matrix at this stage is

\n

\\[ \\var{step2} \\]

\n

c) Introduce zeros in the third column

\n

The third entry in the first row is $\\var{step2[0][2]}$, and we have a $1$ in the third entry of the third row, so multiply the third row by $\\var{abs(zero_1_3)}$ and {if(zero_1_3<0,'subtract from','add to')} row 1 to get

\n

\\[ \\simplify[rowvector,all]{{step2[0]}+{zero_1_3}*{step2[2]} = {step2[0]+zero_1_3*step2[2]}} \\]

\n

The third entry in the second row is $\\var{step2[1][2]}$, so multiply the third row by $\\var{abs(zero_2_3)}$ and {if(zero_2_3<0,'subtract from','add to')} row 2 to get

\n

\\[ \\simplify[rowvector,all]{{step2[1]}+{zero_2_3}*{step2[2]} = {step2[1]+zero_2_3*step2[2]}} \\]

\n

The matrix at this stage is

\n

\\[ \\var{step3} \\]

\n

d) Introduce a zero in the second column of the first row

\n

The second entry in the first row is $\\var{step3[0][1]}$, and we have a $1$ in the second entry of the second row, so multiply the second row by $\\var{abs(zero_1_2)}$ and {if(zero_1_2<0,'subtract from','add to')} row 1 to get

\n

\\[ \\simplify[rowvector,all]{{step3[0]}+{zero_1_2}*{step3[1]} = {step3[0]+zero_1_2*step3[1]}} \\]

\n

The matrix at this stage is

\n

\\[ \\var{step4} \\]

\n

Note that we have a $3 \\times 3$ identity matrix in the left three columns, and $\\mathrm{A}^{-1}$ is written in the three columns on the right. That is,

\n

\\[ \\mathrm{A}^{-1} = \\var{inverse} \\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"zero_1_3": {"name": "zero_1_3", "group": "Steps", "definition": "-(step2[0][2]/step2[2][2])", "description": "", "templateType": "anything", "can_override": false}, "inverse": {"name": "inverse", "group": "Steps", "definition": "matrix([\n list(step4[0])[3..6],\n list(step4[1])[3..6],\n list(step4[2])[3..6]\n])", "description": "

The inverse of $\\mathrm{A}$

", "templateType": "anything", "can_override": false}, "step2": {"name": "step2", "group": "Steps", "definition": "matrix([\n step1[0],\n step1[1],\n (step1[2]+zero_3_2*step1[1])*one_3_3\n])", "description": "

Make sure row 3 has a zero in the second column, and row 3 has a 1 in the third column.

", "templateType": "anything", "can_override": false}, "zero_3_1": {"name": "zero_3_1", "group": "Steps", "definition": "-(step0[2][0]/step0[0][0])", "description": "", "templateType": "anything", "can_override": false}, "zero_2_1": {"name": "zero_2_1", "group": "Steps", "definition": "-(step0[1][0]/step0[0][0])", "description": "", "templateType": "anything", "can_override": false}, "step0": {"name": "step0", "group": "Steps", "definition": "matrix([\n list(a[0])+[1,0,0],\n list(a[1])+[0,1,0],\n list(a[2])+[0,0,1]\n])", "description": "", "templateType": "anything", "can_override": false}, "rc": {"name": "rc", "group": "Ungrouped variables", "definition": "//2\nrandom(1,2,3)", "description": "

A random number

", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "repeat(random(-1,1),3)", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "[f[0]]+repeat(random(-1,1),2)", "description": "", "templateType": "anything", "can_override": false}, "zero_2_3": {"name": "zero_2_3", "group": "Steps", "definition": "-(step2[1][2]/step2[2][2])", "description": "", "templateType": "anything", "can_override": false}, "step3": {"name": "step3", "group": "Steps", "definition": "matrix([\n step2[0]+zero_1_3*step2[2],\n step2[1]+zero_2_3*step2[2],\n step2[2]\n])", "description": "

Make sure rows 1 and 2 have a zero in the third column

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "matrix A & b", "definition": "matrix([\n [f[0]*g[0], f[0]*rb*g[1], f[0]*(rb*ra-rb)*g[2]],\n [f[1]*ra*g[0], f[1]*(ra*rb-1)*g[1], f[1]*(ra^2*rb-ra-ra*rb)*g[2]],\n [f[2]*ra*rc*g[0],f[2]*rc*rb*g[1], f[2]*g[2]]\n])", "description": "

This matrix is designed so its determinant is $-1$, meaning its inverse has integer components.

\n

Additionally, when you introduce zeros in the second and third rows, you should end up with a $1$ in each of the leading columns, so you don't have to do a division.

", "templateType": "anything", "can_override": false}, "one_2_2": {"name": "one_2_2", "group": "Steps", "definition": "1/(step0[1][1]+step0[0][1]*zero_2_1)", "description": "", "templateType": "anything", "can_override": false}, "one_3_3_message": {"name": "one_3_3_message", "group": "Steps", "definition": "\"Note that the third column in the third row is $\\\\var{step1[2][2]+zero_3_2*step1[1][2]}$ and not $1$, so divide the third row by $\\\\var{one_3_3}$.\"", "description": "

To be displayed if the third row needs to be scaled in step 2.

", "templateType": "anything", "can_override": false}, "zero_1_2": {"name": "zero_1_2", "group": "Steps", "definition": "-(step3[0][1]/step3[1][1])", "description": "", "templateType": "anything", "can_override": false}, "x_sol": {"name": "x_sol", "group": "Steps", "definition": "inverse*b", "description": "

The solution to Ax = b (found by multiplying b with the inverse of A)

", "templateType": "anything", "can_override": false}, "zero_3_2": {"name": "zero_3_2", "group": "Steps", "definition": "-step1[2][1]/step1[1][1]", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "matrix A & b", "definition": "vector(random(-2..2 except 0),random(-2..2),random(-2..2 except 0))", "description": "", "templateType": "anything", "can_override": false}, "ra": {"name": "ra", "group": "Ungrouped variables", "definition": "//4\nrandom(2..6)", "description": "

A random number

", "templateType": "anything", "can_override": false}, "one_3_3": {"name": "one_3_3", "group": "Steps", "definition": "(1/(step1[2][2]+step1[1][2]*zero_3_2))", "description": "", "templateType": "anything", "can_override": false}, "rb": {"name": "rb", "group": "Ungrouped variables", "definition": "//5\nrandom(2..6)", "description": "

A random number

", "templateType": "anything", "can_override": false}, "step1": {"name": "step1", "group": "Steps", "definition": "matrix([\n step0[0],\n (step0[1]+zero_2_1*step0[0])*one_2_2,\n step0[2]+zero_3_1*step0[0]\n])", "description": "

Make sure rows 2 and 3 have a 0 in the first column, and row 2 has a 1 in the second column.

", "templateType": "anything", "can_override": false}, "step4": {"name": "step4", "group": "Steps", "definition": "matrix([\n step3[0]+zero_1_2*step3[1],\n step3[1],\n step3[2]\n])", "description": "

Make sure row 1 has a zero in the second column.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "f[1]<>g[1] &&\nstep0[0][0] < 999 &&\nstep0[0][1] < 999 &&\nstep0[0][2] < 999 &&\nstep0[0][3] < 999 &&\nstep0[0][4] < 999 &&\nstep0[0][0] > -999 &&\nstep0[0][1] > -999 &&\nstep0[0][2] > -999 &&\nstep0[0][3] > -999 &&\nstep0[0][4] > -999 &&\n\nstep0[1][0] < 999 &&\nstep0[1][1] < 999 &&\nstep0[1][2] < 999 &&\nstep0[1][3] < 999 &&\nstep0[1][4] < 999 &&\nstep0[1][0] > -999 &&\nstep0[1][1] > -999 &&\nstep0[1][2] > -999 &&\nstep0[1][3] > -999 &&\nstep0[1][4] > -999 &&\n\nstep0[2][0] < 999 &&\nstep0[2][1] < 999 &&\nstep0[2][2] < 999 &&\nstep0[2][3] < 999 &&\nstep0[2][4] < 999 &&\nstep0[2][0] > -999 &&\nstep0[2][1] > -999 &&\nstep0[2][2] > -999 &&\nstep0[2][3] > -999 &&\nstep0[2][4] > -999 &&\n\nstep1[0][0] < 999 &&\nstep1[0][1] < 999 &&\nstep1[0][2] < 999 &&\nstep1[0][3] < 999 &&\nstep1[0][4] < 999 &&\nstep1[0][0] > -999 &&\nstep1[0][1] > -999 &&\nstep1[0][2] > -999 &&\nstep1[0][3] > -999 &&\nstep1[0][4] > -999 &&\n\nstep1[1][0] < 999 &&\nstep1[1][1] < 999 &&\nstep1[1][2] < 999 &&\nstep1[1][3] < 999 &&\nstep1[1][4] < 999 &&\nstep1[1][0] > -999 &&\nstep1[1][1] > -999 &&\nstep1[1][2] > -999 &&\nstep1[1][3] > -999 &&\nstep1[1][4] > -999 &&\n\nstep1[2][0] < 999 &&\nstep1[2][1] < 999 &&\nstep1[2][2] < 999 &&\nstep1[2][3] < 999 &&\nstep1[2][4] < 999 &&\nstep1[2][0] > -999 &&\nstep1[2][1] > -999 &&\nstep1[2][2] > -999 &&\nstep1[2][3] > -999 &&\nstep1[2][4] > -999 &&\n\nstep2[0][0] < 999 &&\nstep2[0][1] < 999 &&\nstep2[0][2] < 999 &&\nstep2[0][3] < 999 &&\nstep2[0][4] < 999 &&\nstep2[0][0] > -999 &&\nstep2[0][1] > -999 &&\nstep2[0][2] > -999 &&\nstep2[0][3] > -999 &&\nstep2[0][4] > -999 &&\n\nstep2[1][0] < 999 &&\nstep2[1][1] < 999 &&\nstep2[1][2] < 999 &&\nstep2[1][3] < 999 &&\nstep2[1][4] < 999 &&\nstep2[1][0] > -999 &&\nstep2[1][1] > -999 &&\nstep2[1][2] > -999 &&\nstep2[1][3] > -999 &&\nstep2[1][4] > -999 &&\n\nstep2[2][0] < 999 &&\nstep2[2][1] < 999 &&\nstep2[2][2] < 999 &&\nstep2[2][3] < 999 &&\nstep2[2][4] < 999 &&\nstep2[2][0] > -999 &&\nstep2[2][1] > -999 &&\nstep2[2][2] > -999 &&\nstep2[2][3] > -999 &&\nstep2[2][4] > -999 &&\n\nstep3[0][0] < 999 &&\nstep3[0][1] < 999 &&\nstep3[0][2] < 999 &&\nstep3[0][3] < 999 &&\nstep3[0][4] < 999 &&\nstep3[0][0] > -999 &&\nstep3[0][1] > -999 &&\nstep3[0][2] > -999 &&\nstep3[0][3] > -999 &&\nstep3[0][4] > -999 &&\n\nstep3[1][0] < 999 &&\nstep3[1][1] < 999 &&\nstep3[1][2] < 999 &&\nstep3[1][3] < 999 &&\nstep3[1][4] < 999 &&\nstep3[1][0] > -999 &&\nstep3[1][1] > -999 &&\nstep3[1][2] > -999 &&\nstep3[1][3] > -999 &&\nstep3[1][4] > -999 &&\n\nstep3[2][0] < 999 &&\nstep3[2][1] < 999 &&\nstep3[2][2] < 999 &&\nstep3[2][3] < 999 &&\nstep3[2][4] < 999 &&\nstep3[2][0] > -999 &&\nstep3[2][1] > -999 &&\nstep3[2][2] > -999 &&\nstep3[2][3] > -999 &&\nstep3[2][4] > -999 &&\n\nstep4[0][0] < 999 &&\nstep4[0][1] < 999 &&\nstep4[0][2] < 999 &&\nstep4[0][3] < 999 &&\nstep4[0][4] < 999 &&\nstep4[0][0] > -999 &&\nstep4[0][1] > -999 &&\nstep4[0][2] > -999 &&\nstep4[0][3] > -999 &&\nstep4[0][4] > -999 &&\n\nstep4[1][0] < 999 &&\nstep4[1][1] < 999 &&\nstep4[1][2] < 999 &&\nstep4[1][3] < 999 &&\nstep4[1][4] < 999 &&\nstep4[1][0] > -999 &&\nstep4[1][1] > -999 &&\nstep4[1][2] > -999 &&\nstep4[1][3] > -999 &&\nstep4[1][4] > -999 &&\n\nstep4[2][0] < 999 &&\nstep4[2][1] < 999 &&\nstep4[2][2] < 999 &&\nstep4[2][3] < 999 &&\nstep4[2][4] < 999 &&\nstep4[2][0] > -999 &&\nstep4[2][1] > -999 &&\nstep4[2][2] > -999 &&\nstep4[2][3] > -999 &&\nstep4[2][4] > -999 &&\n\nx_sol[0] > -999 &&\nx_sol[1] > -999 &&\nx_sol[2] > -999 &&\nx_sol[0] < 999 &&\nx_sol[1] < 999 &&\nx_sol[2] < 999", "maxRuns": 100}, "ungrouped_variables": ["ra", "rb", "rc", "f", "g"], "variable_groups": [{"name": "matrix A & b", "variables": ["a", "b"]}, {"name": "Steps", "variables": ["step0", "zero_2_1", "zero_3_1", "one_2_2", "step1", "zero_3_2", "one_3_3", "step2", "zero_1_3", "zero_2_3", "step3", "zero_1_2", "step4", "inverse", "one_3_3_message", "x_sol"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Introduce zeros in the first column below the first entry by adding suitable multiples of the first row to rows 2 and 3.

\n

If necessary, multiply the second row by a suitable constant so that the second entry in the second row is $1$.

\n

$\\left(\\begin{array}{ccc|ccc} \\var{step0[0][0]} & \\var{step0[0][1]} & \\var{step0[0][2]} & \\var{step0[0][3]} & \\var{step0[0][4]} & \\var{step0[0][5]} \\\\ 0 & 1 & ? & ? & ? & ? \\\\ 0 & ? & ? & ? & ? & ? \\end{array}\\right) = $ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "step1", "correctAnswerFractions": false, "numRows": "3", "numColumns": "6", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Now, using this matrix, introduce a zero in the second column of the third row.

\n

If necessary, multiply the third row by a suitable constant so that the third entry in the third row is $1$.

\n

$\\left(\\begin{array}{ccc|ccc} \\var{step0[0][0]} & \\var{step0[0][1]} & \\var{step0[0][2]} & \\var{step0[0][3]} & \\var{step0[0][4]} & \\var{step0[0][5]} \\\\ 0 & 1 & ? & ? & ? & ? \\\\ 0 & 0 & 1 & ? & ? & ? \\end{array}\\right) = $ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "step2", "correctAnswerFractions": false, "numRows": "3", "numColumns": "6", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Next, introduce zeros into the third column of the second and first rows, by adding suitable multiples of the third row to those rows.

\n

$\\left(\\begin{array}{ccc|ccc} ? & ? & 0 & ? & ? & ? \\\\ 0 & 1 & 0 & ? & ? & ? \\\\ 0 & 0 & 1 & ? & ? & ? \\end{array}\\right) = $ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "step3", "correctAnswerFractions": false, "numRows": "3", "numColumns": "6", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

One final operation is needed: add a multiple of the second row to the first row to introduce a zero in the second column of the first row.

\n

\n

$\\left(\\begin{array}{ccc|ccc} 1 & 0 & 0 & ? & ? & ? \\\\ 0 & 1 & 0 & ? & ? & ? \\\\ 0 & 0 & 1 & ? & ? & ? \\end{array}\\right) = $ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "step4", "correctAnswerFractions": false, "numRows": "3", "numColumns": "6", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Hence, using your answer for $A^{-1}$, solve the system of equations $A\\vec{x} = \\vec{b}$ where

\n

$b = \\var{b}$.

\n

$\\vec{x} =$ [[0]]

", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "{x_sol}", "correctAnswerFractions": false, "numRows": 1, "numColumns": 1, "allowResize": true, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Stephen Flood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1397/"}, {"name": "Thomas Winyard", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2464/"}, {"name": "Bethany Marsh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/12155/"}]}]}], "contributors": [{"name": "Stephen Flood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1397/"}, {"name": "Thomas Winyard", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2464/"}, {"name": "Bethany Marsh", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/12155/"}]}