// Numbas version: finer_feedback_settings {"name": "Determine if vectors are perpendicular", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Determine if vectors are perpendicular", "tags": [], "metadata": {"description": "

When are vectors $\\boldsymbol{v,\\;w}$ orthogonal?

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Given the vectors $\\boldsymbol{v} = \\begin{pmatrix}\\var{a} \\\\ \\var{b} \\\\ \\lambda \\end{pmatrix}$ and $\\boldsymbol{w} = \\begin{pmatrix} \\var{c} \\\\ \\var{d} \\\\ \\var{f} \\end{pmatrix}$.

\n

Enter your answers to the following questions as fractions or integers, not decimals.

", "advice": "

a)

\n

$\\boldsymbol{v}$ and $\\boldsymbol{w}$ are perpendicular to one another when $\\boldsymbol{v} \\cdot \\boldsymbol{w} = 0$.

\n

Now

\n

\\begin{align}
\\boldsymbol{v} \\cdot \\boldsymbol{w} &= \\simplify[]{{a}*{c}+{b}*{d}+lambda*{f}} \\\\
&= \\simplify[std]{{f}*lambda+{a*c+b*d}}
\\end{align}

\n

Hence

\n

\\[\\boldsymbol{v} \\cdot \\boldsymbol{w} = 0 \\implies \\simplify[std]{{f}*lambda+{a*c+b*d}}=0 \\implies \\lambda = \\simplify[std]{{-a*c-b*d}/{f}}\\]

\n

b)

\n

$\\boldsymbol{v}$ is in the $xy$ plane when $\\lambda=0$.

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "templateType": "anything"}, "u": {"name": "u", "group": "Ungrouped variables", "definition": "mu1*v+mu2*w", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "s3*random(2..9)", "description": "", "templateType": "anything"}, "s3": {"name": "s3", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "mu1": {"name": "mu1", "group": "Ungrouped variables", "definition": "lcm(random(-5..5 except 0),f)", "description": "", "templateType": "anything"}, "lambda": {"name": "lambda", "group": "Ungrouped variables", "definition": "(-a*c-b*d)/f", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "s4*random(2..9)", "description": "", "templateType": "anything"}, "s5": {"name": "s5", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "mu2": {"name": "mu2", "group": "Ungrouped variables", "definition": "lcm(random(-5..5 except 0),f)", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(2,4,5,10)", "description": "", "templateType": "anything"}, "w": {"name": "w", "group": "Ungrouped variables", "definition": "vector(c,d,f)", "description": "", "templateType": "anything"}, "s4": {"name": "s4", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "vector(a,b,lambda)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s2*random(2..9)", "description": "", "templateType": "anything"}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "s1*random(2..9)", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "u<>vector(0,0,0)", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "s3", "s2", "s1", "s5", "s4", "lambda", "mu1", "mu2", "v", "w", "u"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Calculate the value of $\\lambda$ such that $\\boldsymbol{v}$ and $\\boldsymbol{w}$ are perpendicular.

\n

$\\lambda = $ [[0]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "lambda", "maxValue": "lambda", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}]}]}], "contributors": [{"name": "Adrian Jannetta", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/164/"}]}