// Numbas version: finer_feedback_settings {"name": "Chain rule 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"prompt": "

\\(\\frac{df}{dx}=\\) [[0]]

", "scripts": {}, "type": "gapfill", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "marks": 0, "gaps": [{"showpreview": true, "checkingaccuracy": 0.001, "scripts": {}, "vsetrangepoints": 5, "vsetrange": [0, 1], "checkvariablenames": false, "showFeedbackIcon": false, "showCorrectAnswer": false, "checkingtype": "absdiff", "answer": "{a1}*{a2}*{a3}x^({a3}-1)/({a2}x^{a3}+{a4})", "type": "jme", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "marks": "5", "expectedvariablenames": []}], "showCorrectAnswer": true}], "variables": {"a4": {"definition": "random(3..12#1)", "group": "Ungrouped variables", "name": "a4", "templateType": "randrange", "description": ""}, "a1": {"definition": "random(2..7#1)", "group": "Ungrouped variables", "name": "a1", "templateType": "randrange", "description": ""}, "a2": {"definition": "random(2..6#1)", "group": "Ungrouped variables", "name": "a2", "templateType": "randrange", "description": ""}, "a3": {"definition": "random(2..6#1)", "group": "Ungrouped variables", "name": "a3", "templateType": "randrange", "description": ""}}, "extensions": [], "preamble": {"css": "", "js": ""}, "statement": "

Differentiate the function:

\n

\\(f(x)=\\var{a1}ln(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)

", "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Chain rule

"}, "ungrouped_variables": ["a1", "a2", "a3", "a4"], "tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "name": "Chain rule 2", "variable_groups": [], "rulesets": {}, "advice": "

\\(f(x)=\\var{a1}sin(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)

\n

Recall the chain rule:   \\(\\frac{df}{dx}=\\frac{df}{du}.\\frac{du}{dx}\\)

\n

let \\(u=\\var{a2}x^{\\var{a3}}+\\var{a4}\\)    then   \\(f(x)=\\var{a1}sin(u)\\)

\n

\\(\\frac{df}{du}=\\var{a1}cos(u)\\)  and  \\(\\frac{du}{dx}=\\var{a3}*\\var{a2}x^{\\var{a3}-1}\\)

\n

\\(\\frac{df}{dx}=\\var{a1}cos(u).\\simplify{{a2}*{a3}x^{{a3}-1}}\\)

\n

\\(\\frac{df}{dx}=\\simplify{{a1}*{a2}*{a3}x^{{a3}-1}}cos(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)

", "type": "question", "contributors": [{"name": "Milena Venkova", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2169/"}]}]}], "contributors": [{"name": "Milena Venkova", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2169/"}]}