// Numbas version: finer_feedback_settings {"name": "Matrices: adding and subtracting two 3x3 matrices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "ungrouped_variables": ["matrices"], "functions": {}, "variables": {"matrices": {"templateType": "anything", "description": "
A couple of random matrices to add
", "name": "matrices", "definition": "repeat(matrix(repeat(repeat(random(0..10)*random(1,1,1,-1),3),3)),3)", "group": "Ungrouped variables"}}, "statement": "You will possibly need to adjust the number of rows and the number of columns your solution requires by entering the correct values for your solution; the template will then alter to hold your solution.
", "rulesets": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Adding and subtracting two 3x3 matrices.
"}, "preamble": {"js": "", "css": ""}, "name": "Matrices: adding and subtracting two 3x3 matrices", "variablesTest": {"condition": "", "maxRuns": 100}, "parts": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"showCorrectAnswer": true, "showFeedbackIcon": true, "allowFractions": false, "correctAnswerFractions": false, "scripts": {}, "type": "matrix", "numColumns": 1, "markPerCell": false, "variableReplacementStrategy": "originalfirst", "allowResize": true, "tolerance": 0, "variableReplacements": [], "numRows": 1, "marks": 1, "correctAnswer": "matrices[0]+matrices[1]"}], "showFeedbackIcon": true, "prompt": "What is $\\simplify{{matrices[0]}+{matrices[1]}}$?
\n[[0]]
", "scripts": {}, "type": "gapfill", "marks": 0, "variableReplacements": []}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"showCorrectAnswer": true, "showFeedbackIcon": true, "allowFractions": false, "correctAnswerFractions": false, "scripts": {}, "type": "matrix", "numColumns": 1, "markPerCell": false, "variableReplacementStrategy": "originalfirst", "allowResize": true, "tolerance": 0, "variableReplacements": [], "numRows": 1, "marks": 1, "correctAnswer": "matrices[0]-matrices[1]"}], "showFeedbackIcon": true, "prompt": "What is $\\simplify{{matrices[0]}-{matrices[1]}}$?
\n[[0]]
", "scripts": {}, "type": "gapfill", "marks": 0, "variableReplacements": []}], "extensions": [], "variable_groups": [], "advice": "Remember : matrix multiplication requires each row of the first matrix A be multiplied by each column of the second matrix B:
\nIf \\[ A=\\left( \\begin{array}{ccc}
a & b & c \\\\d & e & f\\\\g & h & j \\end{array} \\right),\\]
and \\[ B=\\left( \\begin{array}{ccc}
k & l & m \\\\n & p & q\\\\r & s & t\\end{array} \\right)\\],
then \\[ A+B=\\left( \\begin{array}{ccc}
a+k & b+l & c+m\\\\d+n & e+p & f+q \\\\g+r & h+s & j+t
\\end{array} \\right)\\]
\\[ A-B=\\left( \\begin{array}{ccc}
a-k & b-l & c-m\\\\d-n & e-p & f-q \\\\g-r & h-s & j-t
\\end{array} \\right)\\]
\n
\n", "type": "question", "contributors": [{"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}]}]}], "contributors": [{"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}]}