// Numbas version: finer_feedback_settings {"name": "Harry's copy of Find gradient of scalar field, ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "variables": {"c1": {"name": "c1", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))"}, "p7": {"name": "p7", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "if(p8=0 and p9=0,1,random(0,1))"}, "p3": {"name": "p3", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..4)"}, "p12": {"name": "p12", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0,1)"}, "d1": {"name": "d1", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))"}, "e1": {"name": "e1", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))"}, "a1": {"name": "a1", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))"}, "p8": {"name": "p8", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0,1)"}, "t": {"name": "t", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0,1)"}, "p4": {"name": "p4", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..4)"}, "p2": {"name": "p2", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..4)"}, "p11": {"name": "p11", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0,1)"}, "p6": {"name": "p6", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..4)"}, "p9": {"name": "p9", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0,1)"}, "p5": {"name": "p5", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..4)"}, "p10": {"name": "p10", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "if(p11=0 and p12=0,1,random(0,1))"}, "b1": {"name": "b1", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))"}, "p1": {"name": "p1", "templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..4)"}}, "metadata": {"description": "
Gradient of $f(x,y,z)$.
", "licence": "Creative Commons Attribution 4.0 International"}, "name": "Harry's copy of Find gradient of scalar field, ", "parts": [{"variableReplacements": [], "showCorrectAnswer": true, "type": "gapfill", "gaps": [{"variableReplacements": [], "checkingtype": "absdiff", "showCorrectAnswer": true, "type": "jme", "checkvariablenames": true, "expectedvariablenames": ["x", "y", "z"], "answer": "{p1*a1}*x^{p1-1}*y^{p2}*z^{p3}+{p4*b1}*x^{p4-1}*y^{p5}*z^{p6}+{c1*d1*p7*(1-t)}*x^{p7-1}*y^{p8}*z^{p9}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p10*t}*x^{p10-1}*y^{p11}*z^{p12}*sin({e1}*x^{p10}*y^{p11}*z^{p12})", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "showpreview": true, "answersimplification": "all", "vsetrangepoints": 5, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "scripts": {}, "marks": 1}, {"variableReplacements": [], "checkingtype": "absdiff", "showCorrectAnswer": true, "type": "jme", "checkvariablenames": true, "expectedvariablenames": ["x", "y", "z"], "answer": "{p2*a1}*x^{p1}*y^{p2-1}*z^{p3}+{p5*b1}*x^{p4}*y^{p5-1}*z^{p6}+{c1*d1*p8*(1-t)}*x^{p7}*y^{p8-1}*z^{p9}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p11*t}*x^{p10}*y^{p11-1}*z^{p12}*sin({e1}*x^{p10}*y^{p11}*z^{p12})", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "showpreview": true, "answersimplification": "all", "vsetrangepoints": 5, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "scripts": {}, "marks": 1}, {"variableReplacements": [], "checkingtype": "absdiff", "showCorrectAnswer": true, "type": "jme", "checkvariablenames": true, "expectedvariablenames": ["x", "y", "z"], "answer": "{p3*a1}*x^{p1}*y^{p2}*z^{p3-1}+{p6*b1}*x^{p4}*y^{p5}*z^{p6-1}+{c1*d1*p9*(1-t)}*x^{p7}*y^{p8}*z^{p9-1}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p12*t}*x^{p10}*y^{p11}*z^{p12-1}*sin({e1}*x^{p10}*y^{p11}*z^{p12})", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "showpreview": true, "answersimplification": "all", "vsetrangepoints": 5, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "scripts": {}, "marks": 1}], "prompt": "$f(x,y,z)=\\simplify[std]{{a1}*x^{p1}*y^{p2}*z^{p3}+{b1}*x^{p4}*y^{p5}*z^{p6}+{c1}*({1-t}*sin({d1}*x^{p7}*y^{p8}*z^{p9})+{t}*cos({e1}*x^{p10}*y^{p11}*z^{p12}))}$.
\n$\\boldsymbol{\\nabla}f =$ [[0]] $i$ + [[1]] $j$ + [[2]] $k$
", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "marks": 0}], "rulesets": {"std": ["all", "!noLeadingMinus", "!collectNumbers"]}, "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "tags": [], "extensions": [], "statement": "Find $\\boldsymbol{\\nabla}f$ for the following function $f(x,y,z)$.
", "preamble": {"css": "", "js": ""}, "ungrouped_variables": ["p2", "p3", "p1", "p6", "p7", "p4", "p5", "p8", "p9", "a1", "p11", "p12", "t", "b1", "p10", "c1", "e1", "d1"], "advice": "This question is simply an exercise in partial differentiation, using the fact that
\n\\[\\boldsymbol{\\nabla}f=\\pmatrix{\\frac{\\partial f}{\\partial x},\\frac{\\partial f}{\\partial y},\\frac{\\partial f}{\\partial z}}.\\]
\nHence
\n\\[\\boldsymbol{\\nabla}f=\\pmatrix{\\simplify{{p1*a1}*x^{p1-1}*y^{p2}*z^{p3}+{p4*b1}*x^{p4-1}*y^{p5}*z^{p6}+{c1*d1*p7*(1-t)}*x^{p7-1}*y^{p8}*z^{p9}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p10*t}*x^{p10-1}*y^{p11}*z^{p12}*sin({e1}*x^{p10}*y^{p11}*z^{p12})},\\simplify{{p2*a1}*x^{p1}*y^{p2-1}*z^{p3}+{p5*b1}*x^{p4}*y^{p5-1}*z^{p6}+{c1*d1*p8*(1-t)}*x^{p7}*y^{p8-1}*z^{p9}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p11*t}*x^{p10}*y^{p11-1}*z^{p12}*sin({e1}*x^{p10}*y^{p11}*z^{p12})},\\simplify{{p3*a1}*x^{p1}*y^{p2}*z^{p3-1}+{p6*b1}*x^{p4}*y^{p5}*z^{p6-1}+{c1*d1*p9*(1-t)}*x^{p7}*y^{p8}*z^{p9-1}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p12*t}*x^{p10}*y^{p11}*z^{p12-1}*sin({e1}*x^{p10}*y^{p11}*z^{p12})}}.\\]
", "type": "question", "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}]}], "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}