// Numbas version: finer_feedback_settings {"name": "Harry's copy of Dot and cross product combinations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"scripts": {}, "warningType": "none", "layout": {"expression": "", "type": "all"}, "maxAnswers": 0, "displayType": "radiogroup", "matrix": [[0, 0, 0.4], [0, 0.4, 0], [0, 0, 0.4], [0, 0.4, 0], [0.4, 0, 0]], "minMarks": 0, "shuffleAnswers": true, "showCorrectAnswer": true, "answers": ["
Scalar
", "Vector
", "Undefined
"], "minAnswers": 0, "maxMarks": 0, "type": "m_n_x", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "choices": ["$\\boldsymbol{(A\\cdot B)\\cdot C}$
", "$\\boldsymbol{(A\\cdot B)C}$
", "$\\boldsymbol{(A\\cdot B)\\times C}$
", "$\\boldsymbol{(A\\times B)\\times C}$
", "$\\boldsymbol{(A\\times B)\\cdot C}$
"], "marks": 0, "shuffleChoices": true}], "variables": {}, "question_groups": [{"name": "", "pickQuestions": 0, "pickingStrategy": "all-ordered", "questions": []}], "preamble": {"css": "", "js": ""}, "showQuestionGroupNames": false, "advice": "\n \n \n1. $\\boldsymbol{(A\\cdot B)\\cdot C}$ is undefined as $\\boldsymbol{A\\cdot B}$ is a scalar and we cannot take the inner product of a scalar with the vector $\\boldsymbol{C}$.
\n \n \n \n2. $\\boldsymbol{(A\\cdot B)C}$ is a vector and is a multiple of $\\boldsymbol{C}$ as $\\boldsymbol{A \\cdot B}$ is a scalar.
\n \n \n \n3. $\\boldsymbol{(A\\cdot B)\\times C}$ is undefined as $\\boldsymbol{A\\cdot B}$ is a scalar and the cross product is only defined between vectors.
\n \n \n \n4. $\\boldsymbol{(A\\times B)\\times C}$ is a vector as $\\boldsymbol{A \\times B}$ and $\\boldsymbol{C}$ are vectors and the cross product between vectors produces a vector.
\n \n \n \n5. $\\boldsymbol{(A\\times B)\\cdot C}$ is a scalar as $\\boldsymbol{A \\times B}$ and $\\boldsymbol{C}$ are vectors and the inner or dot product is between vectors and produces a scalar.
\n \n \n ", "functions": {}, "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "ungrouped_variables": [], "tags": ["checked2015", "cross product", "dot product", "inner product", "mas1602", "MAS2104", "scalar product", "scalars", "unused", "vector", "Vector", "vector product", "vectors"], "type": "question", "metadata": {"notes": "\n \t\t15/07/2012:
\n \t\tAdded tags.
\n \t\t16/07/2012:
\n \t\tAdded tags.
\n \t\t
\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "
Determine if various combinations of vectors are defined or not.
"}, "variable_groups": [], "statement": "Given the vectors $\\boldsymbol{A},\\;\\;\\boldsymbol{B}$ and $\\boldsymbol{C}$ in $3$ dimensional space, state whether the following quantities are scalars, vectors or undefined.
", "variablesTest": {"condition": "", "maxRuns": 100}, "name": "Harry's copy of Dot and cross product combinations", "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}]}], "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}