// Numbas version: finer_feedback_settings {"name": "Milena's copy of Milena's copy of Chain rule ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"a3": {"definition": "random(2..6#1)", "name": "a3", "description": "", "group": "Ungrouped variables", "templateType": "randrange"}, "a2": {"definition": "random(2..6#1)", "name": "a2", "description": "", "group": "Ungrouped variables", "templateType": "randrange"}, "a1": {"definition": "random(2..7#1)", "name": "a1", "description": "", "group": "Ungrouped variables", "templateType": "randrange"}, "a4": {"definition": "random(3..12#1)", "name": "a4", "description": "", "group": "Ungrouped variables", "templateType": "randrange"}}, "statement": "
Differentiate the function:
\n\\(f(x)=(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)^{\\var{a1}}
", "parts": [{"prompt": "\\(\\frac{df}{dx}=\\) [[0]]
", "showCorrectAnswer": true, "showFeedbackIcon": true, "marks": 0, "scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "variableReplacements": [], "gaps": [{"checkingtype": "absdiff", "showCorrectAnswer": false, "marks": "5", "scripts": {}, "type": "jme", "checkvariablenames": false, "answer": "-{a1}*{a2}*{a3}x^({a3}-1)sin({a2}x^{a3}+{a4})", "showFeedbackIcon": false, "vsetrange": [0, 1], "variableReplacementStrategy": "originalfirst", "showpreview": true, "variableReplacements": [], "vsetrangepoints": 5, "checkingaccuracy": 0.001, "expectedvariablenames": []}]}], "tags": [], "ungrouped_variables": ["a1", "a2", "a3", "a4"], "functions": {}, "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}, "preamble": {"js": "", "css": ""}, "extensions": [], "metadata": {"description": "Chain rule
", "licence": "Creative Commons Attribution 4.0 International"}, "name": "Milena's copy of Milena's copy of Chain rule ", "advice": "\\(f(x)=\\var{a1}sin(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
\nRecall the chain rule: \\(\\frac{df}{dx}=\\frac{df}{du}.\\frac{du}{dx}\\)
\nlet \\(u=\\var{a2}x^{\\var{a3}}+\\var{a4}\\) then \\(f(x)=\\var{a1}sin(u)\\)
\n\\(\\frac{df}{du}=\\var{a1}cos(u)\\) and \\(\\frac{du}{dx}=\\var{a3}*\\var{a2}x^{\\var{a3}-1}\\)
\n\\(\\frac{df}{dx}=\\var{a1}cos(u).\\simplify{{a2}*{a3}x^{{a3}-1}}\\)
\n\\(\\frac{df}{dx}=\\simplify{{a1}*{a2}*{a3}x^{{a3}-1}}cos(\\var{a2}x^{\\var{a3}}+\\var{a4})\\)
", "type": "question", "contributors": [{"name": "Milena Venkova", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2169/"}]}]}], "contributors": [{"name": "Milena Venkova", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2169/"}]}