// Numbas version: finer_feedback_settings {"name": "Ida's copy of Solve quadratic inequalities", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"maxRuns": 100, "condition": ""}, "extensions": ["geogebra"], "preamble": {"js": "", "css": ""}, "advice": "

a)

\n

This example is best illustrated by the graph of $\\simplify{f(x)=x^2+({a}-{b})x-{a}{b}}$ below. By finding the roots of the equation we can find the $x$ coordinates where the line crosses the $x$ axis and then we can use a sketch or visualise the graph to work out the set of values for $x$ where $f(x)>0$.\\[\\\\[0.1em]\\]

\n

{geogebra_applet('Hk5dTptY',[[\"a\",a],[\"b\",b]])}

\n

\\[
\\begin{align}
\\simplify{f(x)=x^2+({a}-{b})x-{a}{b}}&>0\\\\
\\simplify{(x+{a})(x-{b})}&=0\\text{.}
\\end{align}
\\]

\n

Therefore

\n

\\[ \\simplify{x<{-a}}\\text{ or }\\simplify{x>{b}}\\text{.}\\]

\n

b)

\n

We use the same method in this example but this time we use our graph to visualise where $g(x)<0$.\\[\\\\[0.1em]\\]

\n

{geogebra_applet('PUFStTNa',[[\"c\",c],[\"d\",d]])}

\n

\\[
\\begin{align}
\\simplify{f(x)=x^2+({c}-{d})x-{c}{d}}&<0\\\\
\\simplify{(x+{c})(x-{d})}&=0\\text{.}
\\end{align}
\\]

\n

Therefore

\n

\\[ \\simplify{x>{-c}}\\text{ and }\\simplify{x<{d}}\\text{.}\\]

\n

c)

\n

The notable difference with solving this equation is the requirement to rearrange the inequality before factorisation.\\[\\\\[0.1em]\\]

\n

{geogebra_applet('CZsSCdH6',[[\"e\",g],[\"f\",f]])}

\n

\\[
\\begin{align}
\\simplify{({g}+{f})x-{g}{f}}&>x^2\\\\
\\simplify{x^2-({g}+{f})x+{g}{f}}&<0\\\\
\\simplify{(x-{g})(x-{f})}&=0\\text{.}
\\end{align}
\\]

\n

Therefore

\n

\\[ \\simplify{x>{g}}\\text{ and }\\simplify{x<{f}}\\text{.}\\]

\n

Alternatively, we can plot the graph of $x^2$ against $\\simplify{({g}+{f})x-{g}{f}}$ to visualise the same result.

\n

{geogebra_applet('Ez697SNE',[[\"g\",g],[\"f\",f]])}

\n

From this graph we can see that the values of $x$ where $\\simplify{({g}+{f})x-{g}{f}}>x^2$ are the same as the values of $x$ where $\\simplify{x^2-({g}+{f})x+{g}{f}}<0$.

", "variables": {"c": {"templateType": "anything", "name": "c", "description": "", "definition": "random(3..6)", "group": "Ungrouped variables"}, "g": {"templateType": "anything", "name": "g", "description": "", "definition": "random(1..4)", "group": "Ungrouped variables"}, "b": {"templateType": "anything", "name": "b", "description": "", "definition": "random(1..5)", "group": "Ungrouped variables"}, "a": {"templateType": "anything", "name": "a", "description": "", "definition": "random(1..5)", "group": "Ungrouped variables"}, "d": {"templateType": "anything", "name": "d", "description": "", "definition": "random(2..4)", "group": "Ungrouped variables"}, "f": {"templateType": "anything", "name": "f", "description": "", "definition": "random(5..9)", "group": "Ungrouped variables"}}, "variable_groups": [], "name": "Ida's copy of Solve quadratic inequalities", "tags": ["factorise a quadratic equation", "factorising", "inequalities", "quadratic inequalities", "range of values for x", "taxonomy"], "rulesets": {}, "parts": [{"type": "gapfill", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrange": [0, 1], "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "scripts": {}, "checkingtype": "absdiff", "vsetrangepoints": 5, "answer": "(x-{b})(x+{a})", "type": "jme", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "marks": 1, "showpreview": true}, {"vsetrange": [0, 1], "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "scripts": {}, "checkingtype": "absdiff", "vsetrangepoints": 5, "answer": "{b}", "type": "jme", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "marks": 1, "showpreview": true}, {"vsetrange": [0, 1], "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "scripts": {}, "checkingtype": "absdiff", "vsetrangepoints": 5, "answer": "-{a}", "type": "jme", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "marks": 1, "showpreview": true}, {"displayColumns": 0, "shuffleChoices": false, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "minMarks": 0, "type": "1_n_2", "variableReplacements": [], "matrix": [0, "1"], "displayType": "dropdownlist", "showFeedbackIcon": true, "choices": ["

AND

", "

OR

"], "maxMarks": 0, "marks": 0, "distractors": ["", ""]}], "showFeedbackIcon": true, "showCorrectAnswer": true, "scripts": {}, "marks": 0, "prompt": "

Find the range of values for $x$ such that $\\simplify{f(x)=x^2+({a}-{b})x-{a}{b}}>0$.

\n

Factorise $f(x)$:

\n

$\\simplify{f(x)=x^2+({a}-{b})x-{a}{b}}=$ [[0]] $=0$.

\n

Hence,

\n

$x>$ [[1]] 

\n

[[3]]

\n

$x<$ [[2]]

"}, {"type": "gapfill", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrange": [0, 1], "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "scripts": {}, "checkingtype": "absdiff", "vsetrangepoints": 5, "answer": "(x-{d})(x+{c})", "type": "jme", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "marks": 1, "showpreview": true}, {"vsetrange": [0, 1], "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "scripts": {}, "checkingtype": "absdiff", "vsetrangepoints": 5, "answer": "{d}", "type": "jme", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "marks": 1, "showpreview": true}, {"vsetrange": [0, 1], "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "scripts": {}, "checkingtype": "absdiff", "vsetrangepoints": 5, "answer": "-{c}", "type": "jme", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "marks": 1, "showpreview": true}, {"displayColumns": 0, "shuffleChoices": false, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "minMarks": 0, "type": "1_n_2", "variableReplacements": [], "matrix": ["1", 0], "displayType": "dropdownlist", "showFeedbackIcon": true, "choices": ["

AND

", "

OR

"], "maxMarks": 0, "marks": 0, "distractors": ["", ""]}], "showFeedbackIcon": true, "showCorrectAnswer": true, "scripts": {}, "marks": 0, "prompt": "

Find the range of values for $x$ such that $\\simplify{f(x)=x^2+({c}-{d})x-{c}{d}}<0$.

\n

Factorise $f(x)$:

\n

$\\simplify{f(x)=x^2+({c}-{d})x-{c}{d}}=$ [[0]] $=0$.

\n

Hence,

\n

$x<$ [[1]]

\n

[[3]] 

\n

$x>$ [[2]]

"}, {"type": "gapfill", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrange": [0, 1], "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "scripts": {}, "checkingtype": "absdiff", "vsetrangepoints": 5, "answer": "(x-{g})(x-{f})", "type": "jme", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "marks": 1, "showpreview": true}, {"vsetrange": [0, 1], "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "scripts": {}, "checkingtype": "absdiff", "vsetrangepoints": 5, "answer": "{g}", "type": "jme", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "marks": 1, "showpreview": true}, {"vsetrange": [0, 1], "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "showCorrectAnswer": true, "scripts": {}, "checkingtype": "absdiff", "vsetrangepoints": 5, "answer": "{f}", "type": "jme", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "marks": 1, "showpreview": true}, {"displayColumns": 0, "shuffleChoices": false, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "minMarks": 0, "type": "1_n_2", "variableReplacements": [], "matrix": ["1", 0], "displayType": "dropdownlist", "showFeedbackIcon": true, "choices": ["

AND

", "

OR

"], "maxMarks": 0, "marks": 0, "distractors": ["", ""]}], "showFeedbackIcon": true, "showCorrectAnswer": true, "scripts": {}, "marks": 0, "prompt": "

Find the range of vaues such that: $\\simplify{({g}+{f})x-{g}{f}>x^2}$   

\n

Rearrange then factorise the inequality:

\n

[[0]] $<0$.

\n

Use the above result to find the range of values for $x$ such that $\\simplify{({g}+{f})x-{g}{f}>x^2}$.

\n

$x>$ [[1]] 

\n

[[3]]  

\n

$x<$ [[2]]

"}], "ungrouped_variables": ["a", "b", "c", "d", "g", "f"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

This question takes the student through variety of examples of quadratic inequalities by asking them for the range(s) for which $x$ meets the inequality.

"}, "statement": "

Solve the following quadratic inequalities by firstly factorising $f(x)$ and then solving for $x$ when $f(x)=0$. It may be helpful to sketch each quadratic.

", "functions": {}, "type": "question", "contributors": [{"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}]}], "contributors": [{"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}