// Numbas version: finer_feedback_settings {"name": "Ida's copy of Expanding a binomial product (difference of two squares, perfect squares)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "variablesTest": {"condition": "", "maxRuns": "127"}, "extensions": [], "variables": {"a": {"templateType": "anything", "name": "a", "group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..4]", "description": ""}}, "rulesets": {}, "functions": {}, "ungrouped_variables": ["a"], "statement": "
Regn ut og gjør uttrykkene eklere.
\nBruk ^ for å skrive en potens, f.eks skriver du a^3 for å få $a^3$
", "preamble": {"css": "", "js": ""}, "parts": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "type": "gapfill", "variableReplacements": [], "scripts": {}, "steps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "type": "information", "variableReplacements": [], "scripts": {}, "marks": 0, "showFeedbackIcon": true, "prompt": "Method 1 (the distributive law)
\nWe expand $\\simplify{(x+{a[0]})(x-{a[0]})}$ one bracket at a time.
\n$\\simplify{(x+{a[0]})(x-{a[0]})}$ | \n$=$ | \n\n $\\simplify{x(x-{a[0]})+{a[0]}(x-{a[0]})}$ \n | \n\n (each term in one bracket times the entire other bracket) \n | \n
\n | $=$ | \n$\\simplify{x^2-{a[0]}x+{a[0]}x-{a[0]*a[0]}}$ | \n(use the distributive law on each bracket) | \n
\n | $=$ | \n$\\simplify{x^2-{a[0]*a[0]}}$ | \n(collect like terms) | \n
Method 2 (FOIL)
\nMultiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.
\n$\\simplify{(x+{a[0]})(x-{a[0]})}$ | \n$=$ | \n\n $\\simplify[basic]{x^2-{a[0]}x+{a[0]}x-{a[0]*a[0]}}$ \n | \n\n (First, Outer, Inner, Last) \n | \n
\n | $=$ | \n$\\simplify{x^2-{a[0]*a[0]}}$ | \n(collect like terms) | \n
Method 3 (difference of two squares)
\nNotice that the product will expand to be a difference of two squares. Square the first term minus the square of the second term.
\n$\\simplify{(x+{a[0]})(x-{a[0]})}$ | \n$=$ | \n\n $\\simplify{x^2-{a[0]*a[0]}}$ \n | \n\n (difference of two squares) \n | \n
Ensure you don't use brackets in your answer.
", "partialCredit": 0, "showStrings": false, "strings": ["(", ")"]}, "variableReplacements": [], "scripts": {}, "marks": 1, "showFeedbackIcon": true, "vsetrange": [0, 1]}], "prompt": "$\\simplify{(x+{a[0]})(x-{a[0]})}$ = [[0]]
\n\n", "stepsPenalty": "1"}, {"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "type": "gapfill", "variableReplacements": [], "scripts": {}, "steps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "type": "information", "variableReplacements": [], "scripts": {}, "marks": 0, "showFeedbackIcon": true, "prompt": "It is important to realise that $\\simplify{(x+{a[2]})^2}=\\simplify{(x+{a[2]})(x+{a[2]})}$. Recall that squaring something is multiplying it by itself.
\n\n
Method 1 (the distributive law)
\nWe expand $\\simplify{(x+{a[2]})(x+{a[2]})}$ one bracket at a time.
\n$\\simplify{(x+{a[2]})(x+{a[2]})}$ | \n$=$ | \n\n $\\simplify{x(x+{a[2]})+{a[2]}(x+{a[2]})}$ \n | \n\n (each term in one bracket times the entire other bracket) \n | \n
\n | $=$ | \n$\\simplify{x^2+{a[2]}x+{a[2]}x+{a[2]*a[2]}}$ | \n(use the distributive law on each bracket) | \n
\n | $=$ | \n$\\simplify{x^2+{2*a[2]}x+{a[2]*a[2]}}$ | \n(collect like terms) | \n
Method 2 (FOIL)
\nMultiply the First terms in each bracket, then the Outer terms, then the Inner terms and then the Last terms. Add them all together.
\n$\\simplify{(x+{a[2]})(x+{a[2]})}$ | \n$=$ | \n\n $\\simplify[basic]{x^2+{a[2]}x+{a[2]}x+{a[2]*a[2]}}$ \n | \n\n (First, Outer, Inner, Last) \n | \n
\n | $=$ | \n$\\simplify{x^2+{2*a[2]}x+{a[2]*a[2]}}$ | \n(collect like terms) | \n
Method 3 (perfect square)
\nNotice that $\\simplify{(x+{a[2]})^2}$ is a perfect square. Square the first term, double the second term times the first, then square the last term, add them all together.
\n$\\simplify{(x+{a[2]})}$ | \n$=$ | \n\n $\\simplify{x^2+{2*a[2]}x+{a[2]*a[2]}}$ \n | \n\n (perfect square) \n | \n
Ensure you don't use brackets in your answer.
", "partialCredit": 0, "showStrings": false, "strings": ["(", ")"]}, "variableReplacements": [], "scripts": {}, "marks": 1, "showFeedbackIcon": true, "vsetrange": [0, 1]}], "prompt": "$\\simplify{(x+{a[2]})^2}$ = [[0]]
\n\n", "stepsPenalty": "1"}], "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": ""}, "variable_groups": [], "name": "Ida's copy of Expanding a binomial product (difference of two squares, perfect squares)", "advice": "", "type": "question", "contributors": [{"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}]}], "contributors": [{"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}