// Numbas version: finer_feedback_settings {"name": "Exam version Savings compound interest 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"perc2": {"group": "Ungrouped variables", "name": "perc2", "definition": "random(5.0..5.8#0.1)", "description": "", "templateType": "anything"}, "int2": {"group": "Ungrouped variables", "name": "int2", "definition": "perc2/36500", "description": "", "templateType": "anything"}, "A1": {"group": "Ungrouped variables", "name": "A1", "definition": "precround(P*(1+int1)^n1,2)", "description": "", "templateType": "anything"}, "P": {"group": "Ungrouped variables", "name": "P", "definition": "random(2000..5000#100)", "description": "", "templateType": "anything"}, "n1": {"group": "Ungrouped variables", "name": "n1", "definition": "random(2..4#1)", "description": "", "templateType": "anything"}, "int1": {"group": "Ungrouped variables", "name": "int1", "definition": "perc1/100", "description": "", "templateType": "anything"}, "perc1": {"group": "Ungrouped variables", "name": "perc1", "definition": "random(5.2..6#0.1)", "description": "", "templateType": "anything"}, "int3": {"group": "Ungrouped variables", "name": "int3", "definition": "perc2/365", "description": "", "templateType": "anything"}, "A2": {"group": "Ungrouped variables", "name": "A2", "definition": "precround(P*(1+int2)^n2,2)", "description": "", "templateType": "anything"}, "n2": {"group": "Ungrouped variables", "name": "n2", "definition": "n1*365", "description": "", "templateType": "anything"}}, "name": "Exam version Savings compound interest 3", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
Compare two savings accounts with different interest rates.
\nrebelmaths
"}, "preamble": {"js": "", "css": ""}, "ungrouped_variables": ["perc1", "perc2", "int1", "int2", "n1", "n2", "P", "A1", "A2", "int3"], "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "functions": {}, "tags": [], "rulesets": {}, "parts": [{"showCorrectAnswer": true, "variableReplacements": [], "prompt": "Suppose that the potential customer chooses Bank A.
\nWhat is the value of $n$?
\n[[0]]
\nWhat is the value of $i$?
\n[[1]]
\nWhat is the value of $A$? Please give your answer to the nearest cent.
\n€[[2]]
", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "scripts": {}, "marks": 0, "showFeedbackIcon": true, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "n1-0.00001", "marks": "0.5", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "n1+0.00001", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "int1-0.0001", "marks": "0.5", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "int1+0.0001", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "A1-0.01", "marks": "2", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "A1+0.01", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}]}, {"showCorrectAnswer": true, "variableReplacements": [], "prompt": "Suppose that the potential customer chooses Bank B.
\nWhat is the value of $n$?
\n[[0]]
\nWhat is the value of $i$? Please include all the decimal places in your answer.
\n[[1]]
\n\nWhat is the value of $A$? Please give your answer to the nearest cent.
\n€[[2]]
\n", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "scripts": {}, "marks": 0, "showFeedbackIcon": true, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "n2-0.00001", "marks": "0.5", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "n2+0.00001", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "int2-0.00001", "marks": "0.5", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "int2+0.00001", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "A2-0.05", "marks": "2", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "A2+0.05", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}]}], "statement": "Two rival high street banks offer customers a new deposit account.
\nBank A offers an account that earns interest at a rate of $\\var{perc1}$% per annum where interest is compounded annually.
\nBank B offers an account that earns interest at a nominal rate of $\\var{perc2}$% per annum where interest is compounded daily.
\nSuppose that a potential customer has €$\\var{P}$ to invest for $\\var{n1}$ years.
\nThe compound interest formula is:
\n$\\ A = P(1+i)^n $
\n\nYou may assume that there are 365 days per annum.
\n", "extensions": [], "advice": "
The compound interest formula is: $\\ A = P(1+i)^n $
\nPart (a)
\nn represents the number of compounding periods , so for Bank A it is $\\var{n1}$ years.
\ni represents the rate of compound interest, for Bank A, the annual interest rate is $\\var{perc1}$% so i is $\\frac {\\var{perc1}} {100}=\\var{int1}$.
\nThe total amount saved after $\\var{n1}$ years is denoted by A. Using the compound interest formula:
\n$A=P(1+i)^n$
\n$A=\\var{P} \\times(1+\\var{int1})^\\var{n1}=\\var{A1}$
\nPart(b)
\nn represents the number of compounding periods. For Bank B, interest is compounded daily for $\\var{n1}$ years so there are a total of $365 \\times \\var{n1} =\\var{n2}$ compounding periods.
\ni represents the rate of compound interest. For Bank B, the interest rate is ${\\var{perc2}}$% per annum compounded daily.
\nThe interest rate per day is $\\frac{\\var{perc2}}{365}=\\var{int3}$%
\nTherefore $i=\\frac{\\var{int3}}{100}=\\var{int2}$
\nThe amount saved after $\\var{n1}$ years is denoted by A. Using the compound interest formula:
\n$A=P(1+i)^n$
\n$A=\\var{P} \\times(1+\\var{int2})^\\var{n2}=\\var{A2}$
", "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "resources": []}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}