// Numbas version: finer_feedback_settings {"name": "Exam version Savings compound interest 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"perc2": {"group": "Ungrouped variables", "name": "perc2", "definition": "random(5.0..5.8#0.1)", "description": "", "templateType": "anything"}, "int2": {"group": "Ungrouped variables", "name": "int2", "definition": "perc2/36500", "description": "", "templateType": "anything"}, "A1": {"group": "Ungrouped variables", "name": "A1", "definition": "precround(P*(1+int1)^n1,2)", "description": "", "templateType": "anything"}, "P": {"group": "Ungrouped variables", "name": "P", "definition": "random(2000..5000#100)", "description": "", "templateType": "anything"}, "n1": {"group": "Ungrouped variables", "name": "n1", "definition": "random(2..4#1)", "description": "", "templateType": "anything"}, "int1": {"group": "Ungrouped variables", "name": "int1", "definition": "perc1/100", "description": "", "templateType": "anything"}, "perc1": {"group": "Ungrouped variables", "name": "perc1", "definition": "random(5.2..6#0.1)", "description": "", "templateType": "anything"}, "int3": {"group": "Ungrouped variables", "name": "int3", "definition": "perc2/365", "description": "", "templateType": "anything"}, "A2": {"group": "Ungrouped variables", "name": "A2", "definition": "precround(P*(1+int2)^n2,2)", "description": "", "templateType": "anything"}, "n2": {"group": "Ungrouped variables", "name": "n2", "definition": "n1*365", "description": "", "templateType": "anything"}}, "name": "Exam version Savings compound interest 3", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Compare two savings accounts with different interest rates.

\n

rebelmaths

"}, "preamble": {"js": "", "css": ""}, "ungrouped_variables": ["perc1", "perc2", "int1", "int2", "n1", "n2", "P", "A1", "A2", "int3"], "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "functions": {}, "tags": [], "rulesets": {}, "parts": [{"showCorrectAnswer": true, "variableReplacements": [], "prompt": "

Suppose that the potential customer chooses Bank A.

\n

What is the value of $n$?

\n

[[0]]

\n

What is the value of $i$?

\n

[[1]]

\n

What is the value of $A$?  Please give your answer to the nearest cent.

\n

€[[2]]

", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "scripts": {}, "marks": 0, "showFeedbackIcon": true, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "n1-0.00001", "marks": "0.5", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "n1+0.00001", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "int1-0.0001", "marks": "0.5", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "int1+0.0001", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "A1-0.01", "marks": "2", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "A1+0.01", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}]}, {"showCorrectAnswer": true, "variableReplacements": [], "prompt": "

Suppose that the potential customer chooses Bank B.

\n

What is the value of $n$?  

\n

[[0]]

\n

What is the value of $i$?  Please include all the decimal places in your answer.

\n

[[1]]

\n

\n

What is the value of $A$?  Please give your answer to the nearest cent.

\n

€[[2]]

\n

", "type": "gapfill", "variableReplacementStrategy": "originalfirst", "scripts": {}, "marks": 0, "showFeedbackIcon": true, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "n2-0.00001", "marks": "0.5", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "n2+0.00001", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "int2-0.00001", "marks": "0.5", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "int2+0.00001", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "allowFractions": false, "type": "numberentry", "variableReplacementStrategy": "originalfirst", "minValue": "A2-0.05", "marks": "2", "mustBeReducedPC": 0, "variableReplacements": [], "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "maxValue": "A2+0.05", "showFeedbackIcon": true, "correctAnswerStyle": "plain"}]}], "statement": "

Two rival high street banks offer customers a new deposit account.

\n

Bank A offers an account that earns interest at a rate of $\\var{perc1}$% per annum where interest is compounded annually.

\n

Bank B offers an account that earns interest at a nominal rate of $\\var{perc2}$% per annum where interest is compounded daily.

\n

Suppose that a potential customer has €$\\var{P}$ to invest for $\\var{n1}$ years.    

\n

The compound interest formula is:

\n

$\\ A = P(1+i)^n $

\n

\n

You may assume that there are 365 days per annum.

\n

                                         

", "extensions": [], "advice": "

The compound interest formula is: $\\ A = P(1+i)^n $

\n

Part (a)

\n

n represents the number of compounding periods , so for Bank A it is $\\var{n1}$ years.

\n

i represents the rate of compound interest, for Bank A, the annual interest rate is $\\var{perc1}$% so i is $\\frac {\\var{perc1}} {100}=\\var{int1}$.

\n

The total amount saved after $\\var{n1}$ years is denoted by A. Using the compound interest formula:

\n

$A=P(1+i)^n$

\n

$A=\\var{P} \\times(1+\\var{int1})^\\var{n1}=\\var{A1}$

\n

Part(b)

\n

n represents the number of compounding periods. For Bank B, interest is compounded daily for $\\var{n1}$ years so there are a total of $365 \\times \\var{n1} =\\var{n2}$ compounding periods.

\n

i represents the rate of compound interest. For Bank B, the interest rate is ${\\var{perc2}}$% per annum compounded daily.

\n

The interest rate per day is $\\frac{\\var{perc2}}{365}=\\var{int3}$%

\n

Therefore $i=\\frac{\\var{int3}}{100}=\\var{int2}$

\n

The amount saved after $\\var{n1}$ years is denoted by A. Using the compound interest formula:

\n

$A=P(1+i)^n$

\n

$A=\\var{P} \\times(1+\\var{int2})^\\var{n2}=\\var{A2}$

", "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}], "resources": []}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}