// Numbas version: exam_results_page_options {"name": "Ida's copy of Applications of differentiation ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

Parts A and B

\n

Here, the question takes you throught the stages needed to find the solution. The reason we differentiate is that the derivative of a function tells us its gradient at a given point, and we want to find where the function has gradient zero because when the gradient is zero we either have a maximum or a minimum point.

\n

Part C

\n

The first part of this question is similar to parts A and B. The tricky bit is the second part! You need to work out the value of $t$ that produces the maximum piont but that is not the final answer - you need to use that value of $t$ to find the maximum height, which you do by substituting $t$ into the original function to find $y$.

", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": ""}, "statement": "

Finn vendepunktet til funksjonen $y=\\simplify {{f}x^2+{g}x+{h}}$. Oppgi svaret med $2$ desimalers nøyaktighet.

\n

Bestem om punktet er et maksimalpunkt eller et minimalpunkt.

", "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "variable_groups": [], "tags": [], "parts": [{"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "gaps": [{"showFeedbackIcon": true, "variableReplacements": [], "maxValue": "-g/(2*f)", "type": "numberentry", "minValue": "-g/(2*f)", "mustBeReducedPC": 0, "strictPrecision": false, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "mustBeReduced": false, "precision": "2", "variableReplacementStrategy": "originalfirst", "scripts": {}, "precisionType": "dp", "precisionMessage": "

", "allowFractions": false, "correctAnswerFraction": false, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "showPrecisionHint": false, "precisionPartialCredit": 0}, {"showFeedbackIcon": true, "variableReplacements": [], "maxValue": "g^2/(4*f)-g^2/(2*f)+h", "type": "numberentry", "minValue": "g^2/(4*f)-g^2/(2*f)+h", "mustBeReducedPC": 0, "strictPrecision": false, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "mustBeReduced": false, "precision": "2", "variableReplacementStrategy": "originalfirst", "scripts": {}, "precisionType": "dp", "precisionMessage": "

", "allowFractions": false, "correctAnswerFraction": false, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "showPrecisionHint": false, "precisionPartialCredit": 0}, {"showFeedbackIcon": true, "checkvariablenames": false, "variableReplacements": [], "expectedvariablenames": [], "type": "jme", "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "vsetrange": [0, 1], "variableReplacementStrategy": "originalfirst", "scripts": {}, "answer": "2*{f}*x+{g}", "marks": 1, "checkingaccuracy": 0.001, "checkingtype": "absdiff"}, {"showFeedbackIcon": true, "checkvariablenames": false, "variableReplacements": [], "expectedvariablenames": [], "type": "jme", "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "vsetrange": [0, 1], "variableReplacementStrategy": "originalfirst", "scripts": {}, "answer": "2*{f}", "marks": 1, "checkingaccuracy": 0.001, "checkingtype": "absdiff"}, {"showFeedbackIcon": true, "variableReplacements": [], "shuffleChoices": false, "displayType": "radiogroup", "distractors": ["", ""], "type": "1_n_2", "showCorrectAnswer": true, "choices": ["

maximalpunkt

", "

minimalpunkt

"], "variableReplacementStrategy": "originalfirst", "scripts": {}, "matrix": ["if(maximum, 1, 0)", "if(maximum, 0, 1)"], "maxMarks": "0", "displayColumns": 0, "marks": 0, "minMarks": 0}], "type": "gapfill", "marks": 0, "prompt": "

\n

Regn først ut den deriverte og den andrederiverte.

\n

\n

$\\displaystyle \\frac{dy}{dx}=$ [[2]]

\n

$\\displaystyle \\frac{d^2y}{dx^2}=$ [[3]]

\n

\n

Dernest, finn $x$ slik at $\\displaystyle \\frac{dy}{dx}=0$.

\n

$x$-koordinaten til vendepunktet er $=$ [[0]]

\n

Vendepunktet er et  [[4]]

\n

\n

", "showCorrectAnswer": true, "variableReplacements": []}], "extensions": [], "variables": {"a": {"definition": "random(0..10#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "name": "a"}, "w": {"definition": "random(2..5#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "name": "w"}, "b": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "b"}, "maximum": {"definition": "f<0", "templateType": "anything", "group": "Ungrouped variables", "description": "

Is the stationary point a maximum?

", "name": "maximum"}, "z": {"definition": "random(20..30#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "name": "z"}, "d": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "d"}, "c": {"definition": "random(2..7)", "templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "c"}, "h": {"definition": "random(0..5#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "name": "h"}, "g": {"definition": "random(-10..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "name": "g"}, "t": {"definition": "random(0..1#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "name": "t"}, "f": {"definition": "random(-10..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "description": "", "name": "f"}}, "ungrouped_variables": ["z", "c", "b", "d", "f", "w", "a", "g", "h", "t", "maximum"], "rulesets": {"std": ["all", "fractionNumbers"]}, "preamble": {"js": "", "css": ""}, "name": "Ida's copy of Applications of differentiation ", "type": "question", "contributors": [{"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}]}], "contributors": [{"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}