// Numbas version: finer_feedback_settings {"name": "Harry's copy of Chain rule - power of a quadratic, ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"question_groups": [{"pickQuestions": 0, "name": "", "pickingStrategy": "all-ordered", "questions": []}], "variablesTest": {"maxRuns": 100, "condition": ""}, "name": "Harry's copy of Chain rule - power of a quadratic, ", "parts": [{"type": "gapfill", "stepsPenalty": 0, "marks": 0, "prompt": "

\\[\\simplify[std]{f(x) = ({a} * x^{m}+{c}x^2+{b})^{n}}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

", "gaps": [{"showpreview": true, "expectedvariablenames": [], "answersimplification": "std", "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showCorrectAnswer": true, "type": "jme", "marks": 3, "checkingtype": "absdiff", "answer": "{n}({a*m}x ^ {m-1}+{2*c}x) * ({a} * x^{m}+{c}x^2+{b})^{n-1}", "vsetrange": [0, 1], "checkvariablenames": false, "scripts": {}}], "steps": [{"prompt": "\n \n \n

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n ", "type": "information", "showCorrectAnswer": true, "marks": 0, "scripts": {}}], "showCorrectAnswer": true, "scripts": {}}], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "tags": ["Calculus", "MAS1601", "SFY0004", "chain rule", "checked2015", "derivative of a function of a function", "differentiation", "function of a function"], "ungrouped_variables": ["a", "c", "b", "s2", "s1", "m", "n"], "variable_groups": [], "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "functions": {}, "type": "question", "showQuestionGroupNames": false, "metadata": {"notes": "

1/08/2012:

\n

Added tags.

\n

Added description.

\n

Checked calculation. OK.

\n

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n

Got rid of a redundant ruleset.

\n

Improved display in prompt.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate $\\displaystyle (ax^m+bx^2+c)^{n}$.

"}, "variables": {"n": {"group": "Ungrouped variables", "definition": "random(3..5)", "name": "n", "templateType": "anything", "description": ""}, "s1": {"group": "Ungrouped variables", "definition": "random(1,-1)", "name": "s1", "templateType": "anything", "description": ""}, "b": {"group": "Ungrouped variables", "definition": "s1*random(1..9)", "name": "b", "templateType": "anything", "description": ""}, "c": {"group": "Ungrouped variables", "definition": "s2*random(1..9)", "name": "c", "templateType": "anything", "description": ""}, "m": {"group": "Ungrouped variables", "definition": "random(3..7)", "name": "m", "templateType": "anything", "description": ""}, "s2": {"group": "Ungrouped variables", "definition": "random(1,-1)", "name": "s2", "templateType": "anything", "description": ""}, "a": {"group": "Ungrouped variables", "definition": "random(2..9)", "name": "a", "templateType": "anything", "description": ""}}, "preamble": {"js": "", "css": ""}, "advice": "\n \n \n

$\\simplify[std]{f(x) = f(x) = ({a} * x^{m}+{c}x^2+{b})^{n}}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{{a} * x^{m}+{c}*x^2+{b}}$ and we have $f(u)=\\simplify[std]{u^{n}}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{m*a}x ^ {m -1}+{2*c}x}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{{n}u^{n-1}} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({m*a}x ^ {m-1}+{2*c}x) * ({n}*u^{n-1})}\\\\\n \n &=&\\simplify[std]{{n}*({m*a}x^{m-1}+{2*c}*x)u^{n-1}}\\\\\n \n &=& \\simplify[std]{{n}*({m*a}x^{m-1}+{2*c}*x)({a}*x^{m}+{c}*x^2+{b})^{n-1}}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x^{m}+{c}x^2+{b}}$.

\n \n ", "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}]}], "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}