// Numbas version: finer_feedback_settings {"name": "Harry's copy of Differentiation: quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"question_groups": [{"pickQuestions": 0, "name": "", "pickingStrategy": "all-ordered", "questions": []}], "variablesTest": {"maxRuns": 100, "condition": ""}, "name": "Harry's copy of Differentiation: quotient rule", "parts": [{"type": "gapfill", "stepsPenalty": 1, "marks": 0, "prompt": "\n
\\[\\simplify[dPoly]{f(x) = ({a} * x + {b}) / Sqrt({c} * x + {d})}\\]
\nYou are given that \\[\\simplify[dPoly]{Diff(f,x,1) = g(x) / (2 * ({c} * x + {d}) ^ (3 / 2))}\\]
\nfor a polynomial $g(x)$. You have to find $g(x)$.
\nYou can click on Steps to get help. You will lose 1 mark if you do so.
\n$g(x)=\\;$[[0]]
\n ", "gaps": [{"showpreview": true, "expectedvariablenames": [], "answersimplification": "dPoly", "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showCorrectAnswer": true, "type": "jme", "marks": 3, "checkingtype": "absdiff", "answer": "(({(a * c)} * x) + {((2 * a * d) + ( - (c * b)))})", "vsetrange": [0, 1], "checkvariablenames": false, "scripts": {}}], "steps": [{"prompt": "The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify{Diff(u/v,x,1)=(v * Diff(u,x,1) -(u * Diff(v,x,1))) / v ^ 2}\\]
Differentiate the following function $f(x)$ using the quotient rule or otherwise.
", "functions": {}, "type": "question", "showQuestionGroupNames": false, "metadata": {"notes": "\n \t\t20/06/2012:
\n \t\tAdded tags.
\n \t\tFeedback on entering and submitting a maths expression talks about being numerically correct. Perhaps some other wording here?
\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Differentiate $f(x) = (a x + b)/ \\sqrt{c x + d}$ and find $g(x)$ such that $ f^{\\prime}(x) = g(x)/ (2(c x + d)^{3/2})$.
"}, "variables": {"d": {"group": "Ungrouped variables", "definition": "if(a*d1=b*c,abs(d1)+1,d1)", "name": "d", "templateType": "anything", "description": ""}, "s1": {"group": "Ungrouped variables", "definition": "random(1,-1)", "name": "s1", "templateType": "anything", "description": ""}, "b": {"group": "Ungrouped variables", "definition": "if(2|a,random(-7..7#2),random(-8..8#2))", "name": "b", "templateType": "anything", "description": ""}, "c": {"group": "Ungrouped variables", "definition": "random(1,3,5,7)", "name": "c", "templateType": "anything", "description": ""}, "d1": {"group": "Ungrouped variables", "definition": "s1*random(1..8)", "name": "d1", "templateType": "anything", "description": ""}, "a": {"group": "Ungrouped variables", "definition": "random(1..8)", "name": "a", "templateType": "anything", "description": ""}}, "preamble": {"js": "", "css": ""}, "advice": "\n \n \nThe quotient rule says that if $u$ and $v$ are functions of $x$ then
\n \n \n \n\\[\\simplify{Diff(u/v,x,1)=(v * Diff(u,x,1) -(u * Diff(v,x,1))) / v ^ 2}\\]
\n \n \n \nFor this example:
\n \n \n \n\\[\\simplify[dPoly]{u = {a} * x + {b}}\\Rightarrow \\simplify{Diff(u,x,1) = {a}}\\]
\n \n \n \n\\[\\simplify[dPoly]{v = Sqrt({c} * x + {d})} \\Rightarrow \\simplify[dPoly]{Diff(v,x,1) = {c} / (2 * Sqrt({c} * x + {d}))}\\]
\n \n \n \nHence on substituting into the quotient rule above we get:
\n \n \n \n\\[\\simplify[dPoly]{Diff(f,x,1) = ({a} * Sqrt({c} * x + {d}) -(({a} * x + {b}) * Diff(v,x,1))) / ({c} * x + {d}) = ({a} * Sqrt({c} * x + {d}) -(({c} * ({a} * x + {b})) / (2 * Sqrt({c} * x + {d})))) / ({c} * x + {d}) = ({2 * a} * ({c} * x + {d}) -({c} * ({a} * x + {b}))) / (2 * ({c} * x + {d}) ^ (3 / 2)) = ({a * c} * x + {2 * a * d -(c * b)}) / (2 * ({c} * x + {d}) ^ (3 / 2))}\\]
\n \n \n \nHence \\[\\simplify[dPoly]{g(x) = {a * c} * x + {2 * a * d -(c * b)}}\\].
\n \n \n ", "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}]}], "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}