// Numbas version: finer_feedback_settings {"name": "Harry's copy of Differentiation: Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"css": "", "js": ""}, "parts": [{"variableReplacements": [], "marks": 0, "type": "gapfill", "prompt": "\n\t\t\t
\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}*x+{d})}\\]
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\t", "variableReplacementStrategy": "originalfirst", "gaps": [{"checkingaccuracy": 0.001, "expectedvariablenames": [], "showFeedbackIcon": true, "checkingtype": "absdiff", "answersimplification": "std", "checkvariablenames": false, "showCorrectAnswer": true, "variableReplacements": [], "marks": 3, "showpreview": true, "vsetrangepoints": 5, "answer": "{det}/({c}x+{d})^2", "vsetrange": [10, 11], "variableReplacementStrategy": "originalfirst", "scripts": {}, "type": "jme"}], "steps": [{"variableReplacements": [], "marks": 0, "type": "information", "prompt": "The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]
The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]
For this example:
\n\t \n\t \n\t \n\t\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]
\n\t \n\t \n\t \n\t\\[\\simplify[std]{v = ({c} * x+{d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {c}}\\]
\n\t \n\t \n\t \n\tHence on substituting into the quotient rule above we get:
\n\t \n\t \n\t \n\t\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x+{d})-{c}({a}x+{b}))/({c}x+{d})^2}\\\\\n\t \n\t &=&\\simplify[std]{({a*c}x+{a*d}-{c*a}x-{c*b})/({c}x+{d})^2}\\\\\n\t \n\t &=&\\simplify[std]{{det}/({c}x+{d})^2}\n\t \n\t \\end{eqnarray*}\\]
\n\t \n\t \n\t", "functions": {}, "tags": [], "statement": "Differentiate the following function $f(x)$ using the quotient rule.
", "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "Differentiate $\\displaystyle \\frac{ax+b}{cx+d}$.
", "licence": "Creative Commons Attribution 4.0 International"}, "variable_groups": [], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "name": "Harry's copy of Differentiation: Quotient rule", "type": "question", "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}]}], "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}