// Numbas version: finer_feedback_settings {"name": "Ida's copy of Ida's copy of Applications of differentiation ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["z", "c", "b", "d", "f", "w", "a", "g", "h", "t", "maximum"], "rulesets": {"std": ["all", "fractionNumbers"]}, "advice": "", "extensions": [], "name": "Ida's copy of Ida's copy of Applications of differentiation ", "functions": {}, "parts": [{"scripts": {}, "showCorrectAnswer": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "prompt": "

\n

Regn først ut den deriverte og den andrederiverte.

\n

\n

$\\displaystyle \\frac{dy}{dx}=$ [[0]]

\n

$\\displaystyle \\frac{d^2y}{dx^2}=$ [[1]]

\n

\n

Dernest, finn $x$ slik at $\\displaystyle \\frac{dy}{dx}=0$.

\n

$x$-koordinaten til ekstremalpunktet er $=$ [[2]]

\n

Ekstremalpunktet er et  [[4]]

\n

\n

", "gaps": [{"showCorrectAnswer": true, "expectedvariablenames": [], "vsetrange": [0, 1], "checkingtype": "absdiff", "checkvariablenames": false, "scripts": {}, "checkingaccuracy": 0.001, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "marks": 1, "showFeedbackIcon": true, "showpreview": true, "answer": "2*{f}*x+{g}", "type": "jme", "vsetrangepoints": 5}, {"showCorrectAnswer": true, "expectedvariablenames": [], "vsetrange": [0, 1], "checkingtype": "absdiff", "checkvariablenames": false, "scripts": {}, "checkingaccuracy": 0.001, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "marks": 1, "showFeedbackIcon": true, "showpreview": true, "answer": "2*{f}", "type": "jme", "vsetrangepoints": 5}, {"showCorrectAnswer": true, "type": "numberentry", "maxValue": "-g/(2*f)", "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "minValue": "-g/(2*f)", "precisionPartialCredit": 0, "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "scripts": {}, "precision": "2", "precisionType": "dp", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "marks": 1, "showFeedbackIcon": false, "showPrecisionHint": false, "mustBeReduced": false, "strictPrecision": false, "precisionMessage": "

You have not given your answer to the correct precision.

", "variableReplacements": []}, {"showCorrectAnswer": true, "choices": ["

maximalpunkt

", "

minimalpunkt

"], "distractors": ["", ""], "minMarks": 0, "scripts": {}, "displayType": "radiogroup", "maxMarks": "0", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true, "matrix": ["if(maximum, 1, 0)", "if(maximum, 0, 1)"], "displayColumns": 0, "type": "1_n_2", "shuffleChoices": false}], "type": "gapfill"}], "preamble": {"css": "", "js": ""}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": ""}, "statement": "

Finn ekstremalpunktet til funksjonen $y=\\simplify {{f}x^2+{g}x+{h}}$. Oppgi svaret med $2$ desimalers nøyaktighet. 

\n

Bestem om punktet er et maksimalpunkt eller et minimalpunkt. 

", "variable_groups": [], "tags": [], "variables": {"c": {"templateType": "anything", "name": "c", "description": "", "definition": "random(2..7)", "group": "Ungrouped variables"}, "g": {"templateType": "randrange", "name": "g", "description": "", "definition": "random(-10..10#1)", "group": "Ungrouped variables"}, "d": {"templateType": "anything", "name": "d", "description": "", "definition": "random(2..5)", "group": "Ungrouped variables"}, "maximum": {"templateType": "anything", "name": "maximum", "description": "

Is the stationary point a maximum?

", "definition": "f<0", "group": "Ungrouped variables"}, "w": {"templateType": "randrange", "name": "w", "description": "", "definition": "random(2..5#0.1)", "group": "Ungrouped variables"}, "h": {"templateType": "randrange", "name": "h", "description": "", "definition": "random(0..5#0.5)", "group": "Ungrouped variables"}, "z": {"templateType": "randrange", "name": "z", "description": "", "definition": "random(20..30#0.5)", "group": "Ungrouped variables"}, "t": {"templateType": "randrange", "name": "t", "description": "", "definition": "random(0..1#0.1)", "group": "Ungrouped variables"}, "b": {"templateType": "anything", "name": "b", "description": "", "definition": "random(2..5)", "group": "Ungrouped variables"}, "f": {"templateType": "randrange", "name": "f", "description": "", "definition": "random(-10..10#1)", "group": "Ungrouped variables"}, "a": {"templateType": "randrange", "name": "a", "description": "", "definition": "random(0..10#0.5)", "group": "Ungrouped variables"}}, "type": "question", "contributors": [{"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}]}], "contributors": [{"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}