// Numbas version: finer_feedback_settings {"name": "Complex Numbers: Modulus, Argument", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"maxRuns": 100, "condition": ""}, "functions": {}, "statement": "

Find the modulus and argument (in radians) of the following complex numbers, where the argument lies between $-\\pi$ and $\\pi$. If your answer is outside this range, simply add or subtract $2\\pi$ to your answer.

\n

When calculating the argument pay particular attention to the quadrant in which the complex number lies.

\n

Input all answers to 3 decimal places.

", "variable_groups": [], "preamble": {"css": "", "js": ""}, "variables": {"s1": {"definition": "switch(t=1,1,t=4,1,-1)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "s1"}, "a4": {"definition": "s8*random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "a4"}, "d2": {"definition": "s7*random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "d2"}, "ans3": {"definition": "precround(abs(z3),3)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "ans3"}, "c4": {"definition": "if(a4=f,f+1,f)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "c4"}, "s6": {"definition": "switch(t=1,-1,t=4,-1,1)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "s6"}, "m2": {"definition": "switch(t=1,q2,t=2,q1,t=3,q4,q2)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "m2"}, "z5": {"definition": "a4+b4*i", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "z5"}, "arg1": {"definition": "precround(arg(z1),3)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "arg1"}, "z3": {"definition": "c2+d2*i", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "z3"}, "a3": {"definition": "s3*random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "a3"}, "tol": {"definition": "0.001", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "tol"}, "ans4": {"definition": "precround(abs(z4),3)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "ans4"}, "z2": {"definition": "a2+b2*i", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "z2"}, "a1": {"definition": "s1*random(2..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "a1"}, "t": {"definition": "random(1..4)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "t"}, "d4": {"definition": "s5*random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "d4"}, "s5": {"definition": "switch(t=3,-1,1)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "s5"}, "q3": {"definition": "'The complex number is in the third quadrant.'", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "q3"}, "b2": {"definition": "s5*random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "b2"}, "q4": {"definition": "'The complex number is in the fourth quadrant.'", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "q4"}, "n": {"definition": "random(3..5)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "n"}, "s8": {"definition": "switch(t=1,1,t=4,-1,t=3,1,-1)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "s8"}, "z6": {"definition": "c4+d4*i", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "z6"}, "b1": {"definition": "s2*random(3..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "b1"}, "arg2": {"definition": "precround(arg(z2),3)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "arg2"}, "f": {"definition": "random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "f"}, "ans2": {"definition": "precround(abs(z2),3)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "ans2"}, "s4": {"definition": "switch(t=1,-1,t=4,-1,1)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "s4"}, "arg3": {"definition": "precround(arg(z3),3)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "arg3"}, "q1": {"definition": "'The complex number is in the first quadrant.'", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "q1"}, "a2": {"definition": "s4*random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "a2"}, "b4": {"definition": "s1*random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "b4"}, "s2": {"definition": "switch(t=1,-1,t=3,-1,1)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "s2"}, "b3": {"definition": "s8*random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "b3"}, "ans1": {"definition": "precround(abs(z1),3)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "ans1"}, "arg4": {"definition": "precround(arg(z4),3)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "arg4"}, "m4": {"definition": "switch(t=1,q1,t=2,q3,t=3,q2,q4)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "m4"}, "q2": {"definition": "'The complex number is in the second quadrant.'", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "q2"}, "z4": {"definition": "a3+b3*i", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "z4"}, "c2": {"definition": "s6*random(1..9)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "c2"}, "s3": {"definition": "switch(t=1,1,t=2,-1,t=3,-1,1)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "s3"}, "s7": {"definition": "switch(t=2,-1,t=3,1,-1)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "s7"}, "m1": {"definition": "switch(t=1,q4,t=2,q2,t=3,q3,q1)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "m1"}, "z1": {"definition": "a1+b1*i", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "z1"}, "m3": {"definition": "switch(t=1,q3,t=2,q4,t=3,q1,q3)", "description": "", "templateType": "anything", "group": "Ungrouped variables", "name": "m3"}}, "tags": [], "advice": "

Note that the arguments $\\theta$ of the complex numbers are in radians and have to be in the range $-\\pi < \\theta \\le \\pi$.

\n

You have to be careful with using a standard calculator when you are finding the argument of a complex number.

\n

If $z=a+bi=r(\\cos(\\theta)+i\\sin(\\theta))$ then we have:$r\\cos(\\theta)=a,\\;\\;r\\sin(\\theta)=b$ and so $\\tan(\\theta) = b/a$.

\n

Using a calculator to find the argument via $\\arctan(b/a)$ works in the range $-\\pi < \\theta \\le \\pi$ when the complex number is in the first or fourth quadrants – you get the correct value.

\n

However, The calculator gives the wrong value for complex numbers in the other quadrants.

\n

Complex number in the Second Quadrant.

\n

Since $\\arctan(b/a)$ does not distinguish between the second and fourth quadrants and the calculator gives the argument for the fourth quadrant you have to add $\\pi$ onto the calculator value.

\n

Complex number in the Third Quadrant.

\n

Since $\\arctan(b/a)$ does not distinguish between the first and third quadrants and the calculator gives the argument for the first quadrant you have to take away $\\pi$ from the calculator value.

\n

a)

\n
Modulus
\n

\\[ \\begin{eqnarray*} |\\var{z1}|&=&\\sqrt{(\\var{a1})^2+(\\var{b1})^2}\\\\ &=& \\var{abs(z1)}\\\\ &=&\\var{ans1} \\end{eqnarray*} \\] to 3 decimal places.

\n
Argument
\n

{m1}

\n

Hence we see that: \\[\\begin{eqnarray*} \\arg(\\var{z1}) &=& \\var{arg(z1)}\\\\ &=& \\var{arg1}\\; \\mbox{radians} \\end{eqnarray*} \\] to 3 decimal places.

\n

b)

\n
Modulus
\n

\\[ \\begin{eqnarray*} |\\var{z2}|&=&\\sqrt{(\\var{a2})^2+(\\var{b2})^2}\\\\ &=& \\var{abs(z2)}\\\\ &=&\\var{ans2} \\end{eqnarray*} \\] to 3 decimal places.

\n
Argument
\n

{m2}

\n

Hence we see that: \\[\\begin{eqnarray*} \\arg(\\var{z2}) &=& \\var{arg(z2)}\\\\ &=& \\var{arg2}\\; \\mbox{radians} \\end{eqnarray*} \\] to 3 decimal places.

\n

c)

\n
Modulus
\n

\\[ \\begin{eqnarray*} |\\var{z3}|&=&\\sqrt{(\\var{c2})^2+(\\var{d2})^2}\\\\ &=& \\var{abs(z3)}\\\\ &=&\\var{ans3} \\end{eqnarray*} \\] to 3 decimal places.

\n
Argument
\n

{m3}

\n

Hence we see that: \\[\\begin{eqnarray*} \\arg(\\var{z3}) &=& \\var{arg(z3)}\\\\ &=& \\var{arg3}\\; \\mbox{radians} \\end{eqnarray*} \\] to 3 decimal places.

\n

d)

\n
Modulus
\n

\\[ \\begin{eqnarray*} |\\var{z4}|&=&\\sqrt{(\\var{a3})^2+(\\var{b3})^2}\\\\ &=& \\var{abs(z4)}\\\\ &=&\\var{ans4} \\end{eqnarray*} \\] to 3 decimal places.

\n
Argument
\n

{m4}

\n

Hence we see that: \\[\\begin{eqnarray*} \\arg(\\var{z4}) &=& \\var{arg(z4)}\\\\ &=& \\var{arg4}\\; \\mbox{radians} \\end{eqnarray*} \\] to 3 decimal places.

", "extensions": [], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"scripts": {}, "marks": 0, "variableReplacements": [], "prompt": "\n

$|\\var{z1}|=\\;\\;$[[0]], $\\arg(\\var{z1})=\\;\\;$[[1]] radians

\n

Input both answers to 3 decimal places.

\n ", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "maxValue": "ans1+tol", "minValue": "ans1-tol", "type": "numberentry", "scripts": {}, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true}, {"marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "maxValue": "arg1+tol", "minValue": "arg1-tol", "type": "numberentry", "scripts": {}, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true}], "showCorrectAnswer": true, "type": "gapfill"}, {"scripts": {}, "marks": 0, "variableReplacements": [], "prompt": "\n

$|\\var{z2}|=\\;\\;$[[0]], $\\arg(\\var{z2})=\\;\\;$[[1]] radians

\n

Input both answers to 3 decimal places.

\n ", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "maxValue": "ans2+tol", "minValue": "ans2-tol", "type": "numberentry", "scripts": {}, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true}, {"marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "maxValue": "arg2+tol", "minValue": "arg2-tol", "type": "numberentry", "scripts": {}, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true}], "showCorrectAnswer": true, "type": "gapfill"}, {"scripts": {}, "marks": 0, "variableReplacements": [], "prompt": "\n

$|\\var{z3}|=\\;\\;$[[0]], $\\arg(\\var{z3})=\\;\\;$[[1]] radians

\n

Input both answers to 3 decimal places.

\n ", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "maxValue": "ans3+tol", "minValue": "ans3-tol", "type": "numberentry", "scripts": {}, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true}, {"marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "maxValue": "arg3+tol", "minValue": "arg3-tol", "type": "numberentry", "scripts": {}, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true}], "showCorrectAnswer": true, "type": "gapfill"}, {"scripts": {}, "marks": 0, "variableReplacements": [], "prompt": "\n

$|\\var{z4}|=\\;\\;$[[0]], $\\arg(\\var{z4})=\\;\\;$[[1]] radians

\n

Input both answers to 3 decimal places.

\n ", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "gaps": [{"marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "maxValue": "ans4+tol", "minValue": "ans4-tol", "type": "numberentry", "scripts": {}, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true}, {"marks": 1, "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "variableReplacementStrategy": "originalfirst", "allowFractions": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "maxValue": "arg4+tol", "minValue": "arg4-tol", "type": "numberentry", "scripts": {}, "variableReplacements": [], "mustBeReduced": false, "showCorrectAnswer": true, "showFeedbackIcon": true}], "showCorrectAnswer": true, "type": "gapfill"}], "ungrouped_variables": ["ans1", "ans2", "ans3", "ans4", "b4", "b1", "b2", "b3", "d4", "d2", "q1", "q3", "q2", "q4", "s3", "s2", "s1", "s7", "s6", "s5", "s4", "m4", "m1", "m3", "arg1", "z3", "arg2", "arg3", "tol", "arg4", "m2", "a1", "a3", "s8", "a4", "z4", "z5", "z6", "z1", "z2", "c4", "f", "n", "a2", "t", "c2"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Finding the modulus and argument (in radians) of four complex numbers; the arguments between $-\\pi$ and $\\pi$ and careful with quadrants!

"}, "name": "Complex Numbers: Modulus, Argument", "type": "question", "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}]}], "contributors": [{"name": "Harry Flynn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/976/"}]}