// Numbas version: finer_feedback_settings {"name": "Joseph's copy of Matrix Multiplication 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"notes": "\n \t\t \t\t
10/07/2012:
\n \t\t \t\tAdded tags.
\n \t\t \t\tDisplay of matrices looks untidy when individual components include negative numbers.
\n \t\t \t\tIs it worthwhile restricting all components of matrices to be non zero?
\n \t\t \t\tQuestion appears to be working correctly.
\n \t\t \n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Multiplication of $2 \\times 2$ matrices.
"}, "variables": {"c11": {"definition": "random(1,0,4)", "templateType": "anything", "description": "", "name": "c11", "group": "Ungrouped variables"}, "a22": {"definition": "random(1..3)", "templateType": "anything", "description": "", "name": "a22", "group": "Ungrouped variables"}, "ac21": {"definition": "a21*c11+a22*c21", "templateType": "anything", "description": "", "name": "ac21", "group": "Ungrouped variables"}, "cb12": {"definition": "c11*b12+c12*b22", "templateType": "anything", "description": "", "name": "cb12", "group": "Ungrouped variables"}, "b22": {"definition": "random(-3..-1)", "templateType": "anything", "description": "", "name": "b22", "group": "Ungrouped variables"}, "ba22": {"definition": "b21*a12+b22*a22", "templateType": "anything", "description": "", "name": "ba22", "group": "Ungrouped variables"}, "ac12": {"definition": "a11*c12+a12*c22", "templateType": "anything", "description": "", "name": "ac12", "group": "Ungrouped variables"}, "ab21": {"definition": "a21*b11+a22*b21", "templateType": "anything", "description": "", "name": "ab21", "group": "Ungrouped variables"}, "ba12": {"definition": "b11*a12+b12*a22", "templateType": "anything", "description": "", "name": "ba12", "group": "Ungrouped variables"}, "ab22": {"definition": "a21*b12+a22*b22", "templateType": "anything", "description": "", "name": "ab22", "group": "Ungrouped variables"}, "ab11": {"definition": "a11*b11+a12*b21", "templateType": "anything", "description": "", "name": "ab11", "group": "Ungrouped variables"}, "ac22": {"definition": "a21*c12+a22*c22", "templateType": "anything", "description": "", "name": "ac22", "group": "Ungrouped variables"}, "ab12": {"definition": "a11*b12+a12*b22", "templateType": "anything", "description": "", "name": "ab12", "group": "Ungrouped variables"}, "c12": {"definition": "a12+b12", "templateType": "anything", "description": "", "name": "c12", "group": "Ungrouped variables"}, "ac11": {"definition": "a11*c11+a12*c21", "templateType": "anything", "description": "", "name": "ac11", "group": "Ungrouped variables"}, "a12": {"definition": "random(1..4)", "templateType": "anything", "description": "", "name": "a12", "group": "Ungrouped variables"}, "cb22": {"definition": "c21*b12+c22*b22", "templateType": "anything", "description": "", "name": "cb22", "group": "Ungrouped variables"}, "b11": {"definition": "random(-3,-1,0,3)", "templateType": "anything", "description": "", "name": "b11", "group": "Ungrouped variables"}, "a11": {"definition": "random(-2,1,2)", "templateType": "anything", "description": "", "name": "a11", "group": "Ungrouped variables"}, "b21": {"definition": "random(2,3)", "templateType": "anything", "description": "", "name": "b21", "group": "Ungrouped variables"}, "cb11": {"definition": "c11*b11+c12*b21", "templateType": "anything", "description": "", "name": "cb11", "group": "Ungrouped variables"}, "ba11": {"definition": "b11*a11+b12*a21", "templateType": "anything", "description": "", "name": "ba11", "group": "Ungrouped variables"}, "cb21": {"definition": "c21*b11+c22*b21", "templateType": "anything", "description": "", "name": "cb21", "group": "Ungrouped variables"}, "a21": {"definition": "random(-2..2)", "templateType": "anything", "description": "", "name": "a21", "group": "Ungrouped variables"}, "ba21": {"definition": "b21*a11+b22*a21", "templateType": "anything", "description": "", "name": "ba21", "group": "Ungrouped variables"}, "b12": {"definition": "random(-3..1)", "templateType": "anything", "description": "", "name": "b12", "group": "Ungrouped variables"}, "c22": {"definition": "random(0,1)", "templateType": "anything", "description": "", "name": "c22", "group": "Ungrouped variables"}, "c21": {"definition": "random(2..5)", "templateType": "anything", "description": "", "name": "c21", "group": "Ungrouped variables"}}, "showQuestionGroupNames": false, "variable_groups": [], "statement": "\n \n \nDo the following matrix problems
Let
\\[A=\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix},\\;\\;\n \n B=\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix},\\;\\;\n \n C=\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\]
Calculate the following products of these matrices:
$AB = \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix} = $ [[0]]
", "scripts": {}}, {"marks": 0, "gaps": [{"correctAnswerFractions": false, "allowResize": false, "correctAnswer": "matrix([\n [ba11,ba12],\n [ba21,ba22]\n])", "marks": 1, "numRows": "2", "numColumns": "2", "allowFractions": false, "showCorrectAnswer": true, "markPerCell": false, "type": "matrix", "tolerance": 0, "scripts": {}}], "showCorrectAnswer": true, "type": "gapfill", "prompt": "$BA = \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}=$ [[0]]
", "scripts": {}}, {"marks": 0, "gaps": [{"correctAnswerFractions": false, "allowResize": false, "correctAnswer": "matrix([\n [cb11,cb12],\n [cb21,cb22]\n])", "marks": 1, "numRows": "2", "numColumns": "2", "allowFractions": false, "showCorrectAnswer": true, "markPerCell": false, "type": "matrix", "tolerance": 0, "scripts": {}}], "showCorrectAnswer": true, "type": "gapfill", "prompt": "$CB = \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix} \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}=$ [[0]]
", "scripts": {}}, {"marks": 0, "gaps": [{"correctAnswerFractions": false, "allowResize": false, "correctAnswer": "matrix([\n [ac11,ac12],\n [ac21,ac22]\n])", "marks": 1, "numRows": "2", "numColumns": "2", "allowFractions": false, "showCorrectAnswer": true, "markPerCell": false, "type": "matrix", "tolerance": 0, "scripts": {}}], "showCorrectAnswer": true, "type": "gapfill", "prompt": "$AC = \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}=$ [[0]]
", "scripts": {}}], "functions": {}, "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers"]}, "advice": "\\[ \\begin{eqnarray*} AB &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{b11}+{a12}{b21}}&\\simplify[]{{a11}{b12}+{a12}{b22}}\\\\ \\simplify[]{{a21}{b11}+{a22}{b21}}&\\simplify[]{{a21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ab11}&\\var{ab12}\\\\ \\var{ab21}&\\var{ab22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]
\n\\[ \\begin{eqnarray*} BA &=& \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{b11}{a11}+{b12}{a21}}&\\simplify[]{{b11}{a12}+{b12}{a22}}\\\\ \\simplify[]{{b21}{a11}+{b22}{a21}}&\\simplify[]{{b21}{a12}+{b22}{a22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ba11}&\\var{ba12}\\\\ \\var{ba21}&\\var{ba22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]
\n\\[ \\begin{eqnarray*} CB &=& \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{c11}{b11}+{c12}{b21}}&\\simplify[]{{c11}{b12}+{c12}{b22}}\\\\ \\simplify[]{{c21}{b11}+{c22}{b21}}&\\simplify[]{{c21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{cb11}&\\var{cb12}\\\\ \\var{cb21}&\\var{cb22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]
\n\\[ \\begin{eqnarray*} AC &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{c11}+{a12}{c21}}&\\simplify[]{{a11}{c12}+{a12}{c22}}\\\\ \\simplify[]{{a21}{c11}+{a22}{c21}}&\\simplify[]{{a21}{c12}+{a22}{c22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ac11}&\\var{ac12}\\\\ \\var{ac21}&\\var{ac22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]
", "name": "Joseph's copy of Matrix Multiplication 1", "ungrouped_variables": ["ba21", "a21", "a22", "ba22", "cb21", "b22", "b21", "cb22", "ac22", "ac21", "ab22", "ab21", "b12", "b11", "c12", "c11", "c22", "a11", "cb11", "cb12", "a12", "c21", "ba11", "ba12", "ab12", "ab11", "ac12", "ac11"], "question_groups": [{"questions": [], "name": "", "pickQuestions": 0, "pickingStrategy": "all-ordered"}], "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question", "preamble": {"js": "", "css": ""}, "contributors": [{"name": "Joseph Clarke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2455/"}]}]}], "contributors": [{"name": "Joseph Clarke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2455/"}]}