// Numbas version: finer_feedback_settings {"name": "Joseph's copy of Matrix Multiplication 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"notes": "\n \t\t \t\t

10/07/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Display of matrices looks untidy when individual components include negative numbers.

\n \t\t \t\t

Is it worthwhile restricting all components of matrices to be non zero?

\n \t\t \t\t

Question appears to be working correctly.

\n \t\t \n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Multiplication of $2 \\times 2$ matrices.

"}, "variables": {"c11": {"definition": "random(1,0,4)", "templateType": "anything", "description": "", "name": "c11", "group": "Ungrouped variables"}, "a22": {"definition": "random(1..3)", "templateType": "anything", "description": "", "name": "a22", "group": "Ungrouped variables"}, "ac21": {"definition": "a21*c11+a22*c21", "templateType": "anything", "description": "", "name": "ac21", "group": "Ungrouped variables"}, "cb12": {"definition": "c11*b12+c12*b22", "templateType": "anything", "description": "", "name": "cb12", "group": "Ungrouped variables"}, "b22": {"definition": "random(-3..-1)", "templateType": "anything", "description": "", "name": "b22", "group": "Ungrouped variables"}, "ba22": {"definition": "b21*a12+b22*a22", "templateType": "anything", "description": "", "name": "ba22", "group": "Ungrouped variables"}, "ac12": {"definition": "a11*c12+a12*c22", "templateType": "anything", "description": "", "name": "ac12", "group": "Ungrouped variables"}, "ab21": {"definition": "a21*b11+a22*b21", "templateType": "anything", "description": "", "name": "ab21", "group": "Ungrouped variables"}, "ba12": {"definition": "b11*a12+b12*a22", "templateType": "anything", "description": "", "name": "ba12", "group": "Ungrouped variables"}, "ab22": {"definition": "a21*b12+a22*b22", "templateType": "anything", "description": "", "name": "ab22", "group": "Ungrouped variables"}, "ab11": {"definition": "a11*b11+a12*b21", "templateType": "anything", "description": "", "name": "ab11", "group": "Ungrouped variables"}, "ac22": {"definition": "a21*c12+a22*c22", "templateType": "anything", "description": "", "name": "ac22", "group": "Ungrouped variables"}, "ab12": {"definition": "a11*b12+a12*b22", "templateType": "anything", "description": "", "name": "ab12", "group": "Ungrouped variables"}, "c12": {"definition": "a12+b12", "templateType": "anything", "description": "", "name": "c12", "group": "Ungrouped variables"}, "ac11": {"definition": "a11*c11+a12*c21", "templateType": "anything", "description": "", "name": "ac11", "group": "Ungrouped variables"}, "a12": {"definition": "random(1..4)", "templateType": "anything", "description": "", "name": "a12", "group": "Ungrouped variables"}, "cb22": {"definition": "c21*b12+c22*b22", "templateType": "anything", "description": "", "name": "cb22", "group": "Ungrouped variables"}, "b11": {"definition": "random(-3,-1,0,3)", "templateType": "anything", "description": "", "name": "b11", "group": "Ungrouped variables"}, "a11": {"definition": "random(-2,1,2)", "templateType": "anything", "description": "", "name": "a11", "group": "Ungrouped variables"}, "b21": {"definition": "random(2,3)", "templateType": "anything", "description": "", "name": "b21", "group": "Ungrouped variables"}, "cb11": {"definition": "c11*b11+c12*b21", "templateType": "anything", "description": "", "name": "cb11", "group": "Ungrouped variables"}, "ba11": {"definition": "b11*a11+b12*a21", "templateType": "anything", "description": "", "name": "ba11", "group": "Ungrouped variables"}, "cb21": {"definition": "c21*b11+c22*b21", "templateType": "anything", "description": "", "name": "cb21", "group": "Ungrouped variables"}, "a21": {"definition": "random(-2..2)", "templateType": "anything", "description": "", "name": "a21", "group": "Ungrouped variables"}, "ba21": {"definition": "b21*a11+b22*a21", "templateType": "anything", "description": "", "name": "ba21", "group": "Ungrouped variables"}, "b12": {"definition": "random(-3..1)", "templateType": "anything", "description": "", "name": "b12", "group": "Ungrouped variables"}, "c22": {"definition": "random(0,1)", "templateType": "anything", "description": "", "name": "c22", "group": "Ungrouped variables"}, "c21": {"definition": "random(2..5)", "templateType": "anything", "description": "", "name": "c21", "group": "Ungrouped variables"}}, "showQuestionGroupNames": false, "variable_groups": [], "statement": "\n \n \n

Do the following matrix problems
Let
\\[A=\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix},\\;\\;\n \n B=\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix},\\;\\;\n \n C=\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\]
Calculate the following products of these matrices:

\n \n \n \n ", "tags": ["matrices", "matrix", "matrix multiplication", "matrix product", "multiplication of matrices", "multiplying matrices", "product of matrices"], "parts": [{"marks": 0, "gaps": [{"correctAnswerFractions": false, "allowResize": false, "correctAnswer": "matrix([\n [ab11,ab12],\n [ab21,ab22]\n])", "marks": 1, "numRows": "2", "numColumns": "2", "allowFractions": false, "showCorrectAnswer": true, "markPerCell": false, "type": "matrix", "tolerance": 0, "scripts": {}}], "showCorrectAnswer": true, "type": "gapfill", "prompt": "

$AB = \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix} = $ [[0]]

", "scripts": {}}, {"marks": 0, "gaps": [{"correctAnswerFractions": false, "allowResize": false, "correctAnswer": "matrix([\n [ba11,ba12],\n [ba21,ba22]\n])", "marks": 1, "numRows": "2", "numColumns": "2", "allowFractions": false, "showCorrectAnswer": true, "markPerCell": false, "type": "matrix", "tolerance": 0, "scripts": {}}], "showCorrectAnswer": true, "type": "gapfill", "prompt": "

$BA = \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}=$ [[0]]

", "scripts": {}}, {"marks": 0, "gaps": [{"correctAnswerFractions": false, "allowResize": false, "correctAnswer": "matrix([\n [cb11,cb12],\n [cb21,cb22]\n])", "marks": 1, "numRows": "2", "numColumns": "2", "allowFractions": false, "showCorrectAnswer": true, "markPerCell": false, "type": "matrix", "tolerance": 0, "scripts": {}}], "showCorrectAnswer": true, "type": "gapfill", "prompt": "

$CB = \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix} \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}=$ [[0]]

", "scripts": {}}, {"marks": 0, "gaps": [{"correctAnswerFractions": false, "allowResize": false, "correctAnswer": "matrix([\n [ac11,ac12],\n [ac21,ac22]\n])", "marks": 1, "numRows": "2", "numColumns": "2", "allowFractions": false, "showCorrectAnswer": true, "markPerCell": false, "type": "matrix", "tolerance": 0, "scripts": {}}], "showCorrectAnswer": true, "type": "gapfill", "prompt": "

$AC = \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}=$ [[0]]

", "scripts": {}}], "functions": {}, "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers"]}, "advice": "

a)

\n

\\[ \\begin{eqnarray*} AB &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{b11}+{a12}{b21}}&\\simplify[]{{a11}{b12}+{a12}{b22}}\\\\ \\simplify[]{{a21}{b11}+{a22}{b21}}&\\simplify[]{{a21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ab11}&\\var{ab12}\\\\ \\var{ab21}&\\var{ab22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

\n

b)

\n

\\[ \\begin{eqnarray*} BA &=& \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{b11}{a11}+{b12}{a21}}&\\simplify[]{{b11}{a12}+{b12}{a22}}\\\\ \\simplify[]{{b21}{a11}+{b22}{a21}}&\\simplify[]{{b21}{a12}+{b22}{a22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ba11}&\\var{ba12}\\\\ \\var{ba21}&\\var{ba22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

\n

c)

\n

\\[ \\begin{eqnarray*} CB &=& \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{c11}{b11}+{c12}{b21}}&\\simplify[]{{c11}{b12}+{c12}{b22}}\\\\ \\simplify[]{{c21}{b11}+{c22}{b21}}&\\simplify[]{{c21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{cb11}&\\var{cb12}\\\\ \\var{cb21}&\\var{cb22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

\n

d)

\n

\\[ \\begin{eqnarray*} AC &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{c11}+{a12}{c21}}&\\simplify[]{{a11}{c12}+{a12}{c22}}\\\\ \\simplify[]{{a21}{c11}+{a22}{c21}}&\\simplify[]{{a21}{c12}+{a22}{c22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ac11}&\\var{ac12}\\\\ \\var{ac21}&\\var{ac22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

", "name": "Joseph's copy of Matrix Multiplication 1", "ungrouped_variables": ["ba21", "a21", "a22", "ba22", "cb21", "b22", "b21", "cb22", "ac22", "ac21", "ab22", "ab21", "b12", "b11", "c12", "c11", "c22", "a11", "cb11", "cb12", "a12", "c21", "ba11", "ba12", "ab12", "ab11", "ac12", "ac11"], "question_groups": [{"questions": [], "name": "", "pickQuestions": 0, "pickingStrategy": "all-ordered"}], "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question", "preamble": {"js": "", "css": ""}, "contributors": [{"name": "Joseph Clarke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2455/"}]}]}], "contributors": [{"name": "Joseph Clarke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2455/"}]}