// Numbas version: exam_results_page_options {"name": "rema's copy of Algebra: Factorising quadratics", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

Factorise the following quadratics

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variables": {"d": {"description": "", "definition": "vector([random(1..3)]+[random(2..3)]+[random(1..3)]+[random(-2..-4)]+[random(3..6)])", "name": "d", "group": "Ungrouped variables", "templateType": "anything"}, "c": {"description": "", "definition": "vector([1]+[1]+[1]+[1]+[1])", "name": "c", "group": "Ungrouped variables", "templateType": "anything"}, "a": {"description": "", "definition": "vector([1]+[random(2..4)]+[1]+[1]+[random(3..4)])", "name": "a", "group": "Ungrouped variables", "templateType": "anything"}, "b": {"description": "", "definition": "vector([random(1..5)] + [random(1..5)] + [random(-1..-5)] + [random(-1..-5)] + [random(2..5)] )", "name": "b", "group": "Ungrouped variables", "templateType": "anything"}}, "tags": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Several quadratics are given and students are asked to factorise them.

"}, "parts": [{"showFeedbackIcon": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "checkingType": "absdiff", "failureRate": 1, "marks": "1", "showPreview": true, "customMarkingAlgorithm": "", "showCorrectAnswer": true, "answer": "({a[0]}x+{b[0]})({c[0]}x+{d[0]})", "notallowed": {"showStrings": false, "message": "", "partialCredit": 0, "strings": ["x^2", "x*x", "x x", "x(", "x*("]}, "checkingAccuracy": 0.0001, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "type": "jme", "scripts": {}, "vsetRange": [0, 1], "expectedVariableNames": [], "checkVariableNames": false, "answerSimplification": "std"}], "variableReplacements": [], "type": "gapfill", "prompt": "

\$\\simplify{{a[0]*c[0]}x^2+{a[0]*d[0]+b[0]*c[0]}x+ {b[0]*d[0]}} = \$ [[0]]

", "scripts": {}, "customMarkingAlgorithm": "", "sortAnswers": false}, {"showFeedbackIcon": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "checkingType": "absdiff", "failureRate": 1, "marks": "1", "showPreview": true, "customMarkingAlgorithm": "", "showCorrectAnswer": true, "answer": "({a[1]}x+{b[1]})({c[1]}x+{d[1]})", "notallowed": {"showStrings": false, "message": "", "partialCredit": 0, "strings": ["x^2", "x*x", "x x", "x(", "x*("]}, "checkingAccuracy": 0.0001, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "type": "jme", "scripts": {}, "vsetRange": [0, 1], "expectedVariableNames": [], "checkVariableNames": false, "answerSimplification": "std"}], "variableReplacements": [], "type": "gapfill", "prompt": "

\$\\simplify{{a[1]*c[1]}x^2+{a[1]*d[1]+b[1]*c[1]}x+ {b[1]*d[1]}} = \$ [[0]]

", "scripts": {}, "customMarkingAlgorithm": "", "sortAnswers": false}, {"showFeedbackIcon": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "checkingType": "absdiff", "failureRate": 1, "marks": "1", "showPreview": true, "customMarkingAlgorithm": "", "showCorrectAnswer": true, "answer": "({a[2]}x+{b[2]})({c[2]}x+{d[2]})", "notallowed": {"showStrings": false, "message": "", "partialCredit": 0, "strings": ["x^2", "x*x", "x x", "x(", "x*("]}, "checkingAccuracy": 0.0001, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "type": "jme", "scripts": {}, "vsetRange": [0, 1], "expectedVariableNames": [], "checkVariableNames": false, "answerSimplification": "std"}], "variableReplacements": [], "type": "gapfill", "prompt": "

\$\\simplify{{a[2]*c[2]}x^2+{a[2]*d[2]+b[2]*c[2]}x+ {b[2]*d[2]}} = \$ [[0]]

", "scripts": {}, "customMarkingAlgorithm": "", "sortAnswers": false}, {"showFeedbackIcon": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "checkingType": "absdiff", "failureRate": 1, "marks": "1", "showPreview": true, "customMarkingAlgorithm": "", "showCorrectAnswer": true, "answer": "({a[3]}x+{b[3]})({c[3]}x+{d[3]})", "notallowed": {"showStrings": false, "message": "", "partialCredit": 0, "strings": ["x^2", "x*x", "x x", "x(", "x*("]}, "checkingAccuracy": 0.0001, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "type": "jme", "scripts": {}, "vsetRange": [0, 1], "expectedVariableNames": [], "checkVariableNames": false, "answerSimplification": "std"}], "variableReplacements": [], "type": "gapfill", "prompt": "

\$\\simplify{{a[3]*c[3]}x^2+{a[3]*d[3]+b[3]*c[3]}x+ {b[3]*d[3]}} = \$ [[0]]

", "scripts": {}, "customMarkingAlgorithm": "", "sortAnswers": false}, {"showFeedbackIcon": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "unitTests": [], "extendBaseMarkingAlgorithm": true, "gaps": [{"vsetRangePoints": 5, "checkingType": "absdiff", "failureRate": 1, "marks": "1", "showPreview": true, "customMarkingAlgorithm": "", "showCorrectAnswer": true, "answer": "({a[4]}x+{b[4]})({c[4]}x+{d[4]})", "notallowed": {"showStrings": false, "message": "", "partialCredit": 0, "strings": ["x^2", "x*x", "x x", "x(", "x*("]}, "checkingAccuracy": 0.0001, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "type": "jme", "scripts": {}, "vsetRange": [0, 1], "expectedVariableNames": [], "checkVariableNames": false, "answerSimplification": "std"}], "variableReplacements": [], "type": "gapfill", "prompt": "

\$\\simplify{{a[4]*c[4]}x^2+{a[4]*d[4]+b[4]*c[4]}x+ {b[4]*d[4]}} = \$ [[0]]

", "scripts": {}, "customMarkingAlgorithm": "", "sortAnswers": false}], "variablesTest": {"maxRuns": 100, "condition": ""}, "name": "rema's copy of Algebra: Factorising quadratics", "functions": {}, "extensions": [], "preamble": {"js": "", "css": ""}, "advice": "

See Lecture 5.4 for examples of me factorising.

", "ungrouped_variables": ["a", "b", "c", "d"], "variable_groups": [], "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "rema Nath", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2545/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "rema Nath", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2545/"}]}