// Numbas version: finer_feedback_settings {"name": "Paul's copy of Mystery derivatives", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Given a set of curves on axes, generated from a function and its first two derivatives, identify which curve corresponds to which derivative.

"}, "preamble": {"css": "", "js": ""}, "functions": {}, "statement": "\n

The following graph (which may take a little while to load) shows three curves: a solid line, a dashed line and a dotted line. These curves represent a function and its derivatives; if we call the function $f$, then one curve represents $f$ and the other two curves represent $f'$ and $f''$.

\n

{geogebra_applet('BsRYG6PV',defs)}

", "parts": [{"choices": ["

Solid line

", "

Dashed line

", "

Dotted line

"], "unitTests": [], "showCorrectAnswer": true, "displayType": "radiogroup", "shuffleAnswers": false, "showFeedbackIcon": true, "minMarks": 0, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "type": "m_n_x", "matrix": "markMatrix", "warningType": "none", "prompt": "

For each curve, select the corresponding derivative. You will score $2$ points for each curve correctly identified, and $-1$ point for each curve incorrectly identified.

", "shuffleChoices": false, "maxAnswers": 0, "layout": {"type": "all", "expression": ""}, "marks": 0, "answers": ["

$f$

", "

$f'$

", "

$f''$

"], "scripts": {}, "maxMarks": 0, "minAnswers": 0, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": ""}], "ungrouped_variables": ["defs"], "variable_groups": [{"variables": ["b", "c", "d", "g", "f", "selector"], "name": "Function definition"}, {"variables": ["lines", "linesText", "markMatrix"], "name": "Answer definition"}], "extensions": ["geogebra"], "variablesTest": {"maxRuns": 100, "condition": ""}, "advice": "

Here are some questions to consider for this problem.

\n", "name": "Paul's copy of Mystery derivatives", "variables": {"c": {"templateType": "anything", "definition": "random(-10..10 except 0)/10", "description": "", "name": "c", "group": "Function definition"}, "b": {"templateType": "anything", "definition": "random(-10..10)/10", "description": "", "name": "b", "group": "Function definition"}, "f": {"templateType": "anything", "definition": "random(0,1)", "description": "", "name": "f", "group": "Function definition"}, "linesText": {"templateType": "anything", "definition": "join(lines,',')", "description": "", "name": "linesText", "group": "Answer definition"}, "defs": {"templateType": "anything", "definition": "[\n ['b',b],\n ['c',c],\n ['d',d],\n ['e',g],\n ['f',f],\n ['cols','{'+linesText+'}'],\n ['sel',selector]\n]", "description": "", "name": "defs", "group": "Ungrouped variables"}, "markMatrix": {"templateType": "anything", "definition": "matrix(map(map(if(lines[a]=b,2,-1),a,0..2),b,[0,1,3]))", "description": "", "name": "markMatrix", "group": "Answer definition"}, "g": {"templateType": "anything", "definition": "random(2..3)", "description": "", "name": "g", "group": "Function definition"}, "lines": {"templateType": "anything", "definition": "shuffle([0,1,3])", "description": "", "name": "lines", "group": "Answer definition"}, "selector": {"templateType": "anything", "definition": "random(0,1)", "description": "", "name": "selector", "group": "Function definition"}, "d": {"templateType": "anything", "definition": "random(3..5)", "description": "", "name": "d", "group": "Function definition"}}, "rulesets": {}, "type": "question", "contributors": [{"name": "Philip Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/362/"}, {"name": "Paul Hancock", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1738/"}]}]}], "contributors": [{"name": "Philip Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/362/"}, {"name": "Paul Hancock", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1738/"}]}