// Numbas version: finer_feedback_settings {"name": "Polynomials: equating coefficients 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["k", "n", "poly", "otherpoly", "j"], "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Equating coefficients of a polynomial. Basic ones that don't require simultaneous equations.

"}, "functions": {}, "preamble": {"css": "", "js": ""}, "extensions": [], "statement": "

Suppose that during some working, you find that 

\n

{poly} $=$ {otherpoly}

\n

for all $x$.

", "tags": [], "advice": "

Two polynomials are equal if and only if their corresponding coefficients are also equal.

\n

So we 'equate the coefficients' of the polynomials given in this question, this means that the constant terms must be equal, ie

\n

\\[\\simplify{{k[0]}=C_0+{j[0]}}\\]

\n

the coefficients of the $x$ terms must be equal, ie

\n

\\[\\simplify{{k[1]}={j[1]}C_1+{j[2]}}\\]

\n

the coefficients of the $x^2$ terms must be equal, ie

\n

\\[\\simplify{{k[2]}=C_2}\\]

\n

the coefficients of the $x^3$ terms must be equal, ie

\n

\\[\\simplify{{k[3]}={j[3]}C_3}\\]

\n

the coefficients of the $x^4$ terms must be equal, ie

\n

\\[\\simplify{{k[4]}=C_4/{j[4]}}\\]

\n

and the coefficients of the $x^5$ terms must be equal, ie

\n

\\[\\simplify{{k[5]}=C_5/{j[5]}+{j[6]}}.\\]

\n

Solving equal of these equations for $C_i$ gives our required values.

", "variables": {"n": {"group": "Ungrouped variables", "definition": "random(3..5)", "templateType": "anything", "name": "n", "description": ""}, "otherpoly": {"group": "Ungrouped variables", "definition": "'\\$\\\\simplify{C_0+{j[0]}+({j[1]}C_1+{j[2]})x+C_2*x^2+({j[3]}C_3)x^3+(C_4/{j[4]})x^4+(C_5/{j[5]}+{j[6]})x^5}\\$'", "templateType": "anything", "name": "otherpoly", "description": ""}, "poly": {"group": "Ungrouped variables", "definition": "if(n=2,'\\$\\\\simplify{{k[0]}+{k[1]}x+{k[2]}x^2}\\$',\nif(n=3, '\\$\\\\simplify{{k[0]}+{k[1]}x+{k[2]}x^2+{k[3]}x^3}\\$',\nif(n=4, '\\$\\\\simplify{{k[0]}+{k[1]}x+{k[2]}x^2+{k[3]}x^3+{k[4]}x^4}\\$',\nif(n=5, '\\$\\\\simplify{{k[0]}+{k[1]}x+{k[2]}x^2+{k[3]}x^3+{k[4]}x^4+{k[5]}x^5}\\$',''\n))))", "templateType": "anything", "name": "poly", "description": ""}, "j": {"group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..7]", "templateType": "anything", "name": "j", "description": ""}, "k": {"group": "Ungrouped variables", "definition": "repeat(random(0,random(-12..12 except 0)),n)+[random(-12..12 except 0)]+[0,0,0,0]", "templateType": "anything", "name": "k", "description": ""}}, "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}, "name": "Polynomials: equating coefficients 1", "parts": [{"marks": 0, "variableReplacements": [], "scripts": {}, "type": "gapfill", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "prompt": "

What can be said about the value of $C_i$?

\n

$C_0=$ [[0]], $C_1=$ [[1]], $C_2=$ [[2]], $C_3=$ [[3]], $C_4=$ [[4]], $C_5=$ [[5]] 

", "showCorrectAnswer": true, "gaps": [{"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "k[0]-j[0]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "k[0]-j[0]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "(k[1]-j[2])/j[1]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "(k[1]-j[2])/j[1]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "k[2]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "k[2]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "k[3]/j[3]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "k[3]/j[3]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "k[4]*j[4]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "k[4]*j[4]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "(k[5]-j[6])*j[5]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "(k[5]-j[6])*j[5]"}]}], "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Paul Hancock", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1738/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Paul Hancock", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1738/"}]}