// Numbas version: finer_feedback_settings {"name": "Polynomials: equating coefficients 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["k", "n", "poly", "otherpoly", "j"], "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "
Equating coefficients of a polynomial. Basic ones that don't require simultaneous equations.
"}, "functions": {}, "preamble": {"css": "", "js": ""}, "extensions": [], "statement": "Suppose that during some working, you find that
\n{poly} $=$ {otherpoly}
\nfor all $x$.
", "tags": [], "advice": "Two polynomials are equal if and only if their corresponding coefficients are also equal.
\nSo we 'equate the coefficients' of the polynomials given in this question, this means that the constant terms must be equal, ie
\n\\[\\simplify{{k[0]}=C_0+{j[0]}}\\]
\nthe coefficients of the $x$ terms must be equal, ie
\n\\[\\simplify{{k[1]}={j[1]}C_1+{j[2]}}\\]
\nthe coefficients of the $x^2$ terms must be equal, ie
\n\\[\\simplify{{k[2]}=C_2}\\]
\nthe coefficients of the $x^3$ terms must be equal, ie
\n\\[\\simplify{{k[3]}={j[3]}C_3}\\]
\nthe coefficients of the $x^4$ terms must be equal, ie
\n\\[\\simplify{{k[4]}=C_4/{j[4]}}\\]
\nand the coefficients of the $x^5$ terms must be equal, ie
\n\\[\\simplify{{k[5]}=C_5/{j[5]}+{j[6]}}.\\]
\nSolving equal of these equations for $C_i$ gives our required values.
", "variables": {"n": {"group": "Ungrouped variables", "definition": "random(3..5)", "templateType": "anything", "name": "n", "description": ""}, "otherpoly": {"group": "Ungrouped variables", "definition": "'\\$\\\\simplify{C_0+{j[0]}+({j[1]}C_1+{j[2]})x+C_2*x^2+({j[3]}C_3)x^3+(C_4/{j[4]})x^4+(C_5/{j[5]}+{j[6]})x^5}\\$'", "templateType": "anything", "name": "otherpoly", "description": ""}, "poly": {"group": "Ungrouped variables", "definition": "if(n=2,'\\$\\\\simplify{{k[0]}+{k[1]}x+{k[2]}x^2}\\$',\nif(n=3, '\\$\\\\simplify{{k[0]}+{k[1]}x+{k[2]}x^2+{k[3]}x^3}\\$',\nif(n=4, '\\$\\\\simplify{{k[0]}+{k[1]}x+{k[2]}x^2+{k[3]}x^3+{k[4]}x^4}\\$',\nif(n=5, '\\$\\\\simplify{{k[0]}+{k[1]}x+{k[2]}x^2+{k[3]}x^3+{k[4]}x^4+{k[5]}x^5}\\$',''\n))))", "templateType": "anything", "name": "poly", "description": ""}, "j": {"group": "Ungrouped variables", "definition": "shuffle(-12..12 except 0)[0..7]", "templateType": "anything", "name": "j", "description": ""}, "k": {"group": "Ungrouped variables", "definition": "repeat(random(0,random(-12..12 except 0)),n)+[random(-12..12 except 0)]+[0,0,0,0]", "templateType": "anything", "name": "k", "description": ""}}, "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}, "name": "Polynomials: equating coefficients 1", "parts": [{"marks": 0, "variableReplacements": [], "scripts": {}, "type": "gapfill", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "prompt": "What can be said about the value of $C_i$?
\n$C_0=$ [[0]], $C_1=$ [[1]], $C_2=$ [[2]], $C_3=$ [[3]], $C_4=$ [[4]], $C_5=$ [[5]]
", "showCorrectAnswer": true, "gaps": [{"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "k[0]-j[0]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "k[0]-j[0]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "(k[1]-j[2])/j[1]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "(k[1]-j[2])/j[1]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "k[2]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "k[2]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "k[3]/j[3]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "k[3]/j[3]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "k[4]*j[4]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "k[4]*j[4]"}, {"variableReplacements": [], "marks": 1, "showFeedbackIcon": true, "correctAnswerStyle": "plain", "type": "numberentry", "allowFractions": true, "variableReplacementStrategy": "originalfirst", "maxValue": "(k[5]-j[6])*j[5]", "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "showCorrectAnswer": true, "scripts": {}, "correctAnswerFraction": true, "minValue": "(k[5]-j[6])*j[5]"}]}], "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Paul Hancock", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1738/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Paul Hancock", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1738/"}]}