// Numbas version: exam_results_page_options {"name": "Algebra: Functions, inverses and compositions [L3 Randomised]", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"prompt": "

\$f(x) = \\simplify{{mf}x+{cf}}\$.

\n

\$g(x) = \\simplify{{mg}x+{cg}}\$.

\n

\$h(x) = \\simplify{{mh}x+{ch}}\$.

\n

\n

\n

\$f(\\var{x[1]}) =\$ [[0]]

\n

\$h(\\var{x[2]}) = \$ [[1]]

\n

\$f(g(\\var{x[3]}))= \$ [[2]]

\n

\$g(h(\\var{x[4]})) = \$ [[3]]

\n

\$g(g(\\var{x[5]})) = \$ [[4]]

\n

\$f^{-1}(\\var{fx[6]}) = \$ [[5]]

\n

\$h^{-1}(\\var{hx[7]}) = \$ [[6]]

\n

\$g^{-1}(\\var{gx[8]}) = \$ [[7]]

\n

\$h^{-1}(\\var{hx[9]}) = \$ [[8]]

\n

\$g(g(\\var{x[10]})) = \$ [[9]]

\n

If \$a\$ is any number, what is \$g(g(a))\$?

\n

\$g(g(a)) = \$ [[10]]

\n

\n

If \$p\$ is some number, what is \$f^{-1}(p)\$?

\n

\$f^{-1}(p) = \$ [[11]]

\n

\n

If \$s\$ is some number, what is \$g^{-1}(s)\$?

\n

\$g^{-1}(s) = \$   [[12]]