// Numbas version: finer_feedback_settings {"name": "1. Laws of indices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "1. Laws of indices", "variables": {"c": {"name": "c", "templateType": "anything", "definition": "random(2,4)", "group": "Ungrouped variables", "description": "
Used in parts b,d and f
"}, "d": {"name": "d", "templateType": "anything", "definition": "random(3..5)", "group": "Ungrouped variables", "description": "Used in parts b and e
"}, "p": {"name": "p", "templateType": "anything", "definition": "random(2..9)", "group": "Ungrouped variables", "description": "Used in parts b and d
"}, "q": {"name": "q", "templateType": "anything", "definition": "random(3,5)", "group": "Ungrouped variables", "description": "Used in parts b,d and f
"}, "x": {"name": "x", "templateType": "anything", "definition": "random(2..9 except y)", "group": "Ungrouped variables", "description": "Used in parts a,c and e
"}, "b": {"name": "b", "templateType": "anything", "definition": "random(2..9)", "group": "Ungrouped variables", "description": "Used in part c
"}, "y": {"name": "y", "templateType": "anything", "definition": "random(2..6)", "group": "Ungrouped variables", "description": "\nUsed in parts a,c and f
"}, "g": {"name": "g", "templateType": "anything", "definition": "random(2..9 except b)", "group": "Ungrouped variables", "description": "Used in part c
"}}, "variable_groups": [], "advice": "Here we are using the rule of indices: $a^m \\times a^n = a^{m+n}$.
\nUsing this rule,
\n\\[
\\begin{align}
a^\\var{x} \\times a^\\var{y}\\ &= a^\\simplify[all, !collectNumbers]{{x}+{y}}\\\\
&= a^\\var{x+y}.
\\end{align}
\\]
We are asked to find $\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q}$.
\nNotice there is a constant in front of each of the terms.
\nTo do this, write the product out explicitly, as
\n\\[\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q} = \\var{c} \\times \\var{d} \\times a^\\var{p} \\times a^\\var{q}.\\]
\nWe know that $\\var{c} \\times \\var{d} = \\var{c*d}$, and using the rule of indices: $a^\\var{p} \\times a^\\var{q} = a^\\var{p+q}$.
\nTherefore:
\n\\begin{align}
\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q}&= \\var{c*d} \\times a^\\var{p+q} \\\\
&= \\simplify{{c*d}*a^{p+q}}.
\\end{align}
Here we are using: $a^m \\div a^n = a^{m-n}$.
\nWe are asked to simplify the expression, $\\displaystyle\\simplify{{b}*a^{x}/({g}*a^{y})}$.
\nTo do this, we just have to use the previously mentioned rule of indices. We write this out explicity as
\n\\[\\simplify{{b}*a^{x}/({g}*a^{y})} = \\simplify{{b}/{g}} \\times \\simplify{a^{x}/(a^{y})}.\\]
\nUsing rules of indices,
\n\\begin{align} \\frac{a^\\var{x}}{a^\\var{y}} &= a^\\var{x} \\div a^\\var{y}\\\\
&= a^\\simplify[all, !collectNumbers]{{x}-{y}}\\\\
&= a^\\var{x-y}.
\\end{align}
Therefore,
\n\\begin{align}
\\frac{\\var{b}a^\\var{x}}{\\var{g}a^\\var{y}} &= \\simplify{{b}/{g}} \\times \\simplify{a^{{x}-{y}}}\\\\
&= \\simplify{{b}/{g}*a^{x-y}}.
\\end{align}
Alternatively,
\nUsing the rule of indices: $a^{-m} = \\displaystyle\\frac{1}{a^{m}}$, we can rewrite the question as:
\n\\begin{align}
\\frac{\\var{b}a^\\var{x}}{\\var{g}a^\\var{y}} &= \\simplify{{b}/{g}} \\times \\frac{a^\\var{x}}{a^\\var{y}}\\\\
&= \\simplify{{b}/{g}} \\times a^\\var{x} \\times a^{-\\var{y}}.
\\end{align}
And then using the rule: $a^m \\times a^n = a^{m+n}$, this becomes:
\n\\begin{align}
\\simplify{{b}/{g}} \\times a^\\var{x} \\times a^{-\\var{y}} &= \\simplify{{b}/{g}} \\times a^\\simplify[all,!collectNumbers]{{x}+(-{y})}\\\\
&= \\simplify{{b}/{g}*a^{x-y}}.
\\end{align}
The question asks us to simplify $(\\simplify{{c}*a^{p}})^{\\var{q}}$.
\nTo do this we use the rules:
\n\\[(a^{m})^{n} = a^{mn},\\]
\n\\[(ab)^m = a^mb^m.\\]
\nWe can then expand the equation as
\n\\[(\\simplify{{c}*a^{p}})^{\\var{q}}= \\var{c}^{\\var{q}} \\times (a^{\\var{p}})^{\\var{q}}.\\]
\nThen using the rule of indices mentioned previously,
\n\\[
\\begin{align}
(\\simplify{{c}*a^{p}})^{\\var{q}}&= \\simplify{{c}^{q}} \\times a^\\var{p*q}\\\\
&= \\simplify{{c}^{q}*a^{p*q}}.
\\end{align}
\\]
The question asks us to simplify $\\sqrt[\\var{d}]{\\var{x}^\\var{d}a}$.
\nTo do this we use the rules:
\n\\[a^\\frac{1}{m} = \\sqrt[m]{a},\\]
\n\\[(ab)^m = a^mb^m.\\]
\nWe can expand the expression as follows:
\n\\[
\\begin{align}
\\sqrt[\\var{d}]{a} &= (\\simplify{a})^\\frac{1}{\\var{d}}\\\\
&= a^\\frac{1}{\\var{d}}.
\\end{align}
\\]
The question requires us to simplify $\\sqrt[\\var{c}]{a^\\var{q}}$.
\nHere, we use the rule of indices: $a^\\frac{n}{m} = \\sqrt[m]{a^n}$, allowing us to expand the expression as follows:
\n\\[
\\begin{align}
\\sqrt[\\var{c}]{\\simplify{a^{q}}} &= \\simplify[fractionnumbers,all]{(a^{q})^{{1}/{{c}}}}\\\\
&= \\simplify[fractionnumbers,all]{a^{{q}/{c}}}.
\\end{align}
\\]
Use the rule: $a^m \\times a^n = a^{m+n}$.
", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customMarkingAlgorithm": ""}], "type": "gapfill", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "customMarkingAlgorithm": "", "scripts": {}, "stepsPenalty": "1", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "sortAnswers": false, "gaps": [{"expectedVariableNames": [], "checkingAccuracy": 0.001, "type": "jme", "failureRate": 1, "showCorrectAnswer": true, "notallowed": {"partialCredit": 0, "message": "You must write your answer as a single power of a.
", "strings": ["*", "(", ")", "+"], "showStrings": true}, "marks": "2", "answer": "a^{x+y}", "variableReplacements": [], "vsetRange": [0, 1], "customMarkingAlgorithm": "", "scripts": {"mark": {"script": "// Parse the student's answer as a syntax tree\nvar studentTree = Numbas.jme.compile(this.studentAnswer,Numbas.jme.builtinScope);\n\n// Create the pattern to match against \n// we just want two sets of brackets, each containing two terms\n// or one of the brackets might not have a constant term\n// or for repeated roots, you might write (x+a)^2\nvar rule = Numbas.jme.compile('m_any(a^(m_number))');\n\n// Check the student's answer matches the pattern. \nvar m = Numbas.jme.display.matchTree(rule,studentTree,true);\n// If not, take away marks\nif(!m) {\n this.multCredit(0,'You haven\\'t simplified: your answer is not in the form $\\a^?$.');\n}", "order": "after"}}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "unitTests": [], "checkVariableNames": false, "vsetRangePoints": 5, "checkingType": "absdiff", "showPreview": true, "extendBaseMarkingAlgorithm": true, "musthave": {"partialCredit": 0, "message": "You must write your answer as a single power of a.
", "strings": ["^"], "showStrings": true}}], "unitTests": [], "extendBaseMarkingAlgorithm": true, "prompt": "Write $a^{\\var{x}} \\times a^{\\var{y}}$ as a single power of $a$.
\n\n$a^{\\var{x}} \\times a^{\\var{y}} =$ [[0]].
"}, {"steps": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "type": "information", "showCorrectAnswer": true, "unitTests": [], "marks": 0, "prompt": "You could use one of the following rules:
\n$a^m \\div a^n = a^{m-n}$.
\n$a^{-m} = \\displaystyle\\frac{1}{a^m}$.
", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customMarkingAlgorithm": ""}], "type": "gapfill", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "customMarkingAlgorithm": "", "scripts": {}, "stepsPenalty": "1", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "sortAnswers": false, "gaps": [{"expectedVariableNames": [], "checkingAccuracy": 0.001, "type": "jme", "failureRate": 1, "showCorrectAnswer": true, "marks": "2", "answer": "{b/g}a^{x-y}", "variableReplacements": [], "vsetRange": [0, 1], "customMarkingAlgorithm": "", "scripts": {"mark": {"script": "// Parse the student's answer as a syntax tree\nvar studentTree = Numbas.jme.compile(this.studentAnswer,Numbas.jme.builtinScope);\n\n// Create the pattern to match against \n// we just want two sets of brackets, each containing two terms\n// or one of the brackets might not have a constant term\n// or for repeated roots, you might write (x+a)^2\nvar rule = Numbas.jme.compile('m_any( (m_number/m_number)*a^(m_pm(m_number)), (m_number*a^(m_pm(m_number)))/m_number )');\n\n// Check the student's answer matches the pattern. \nvar m = Numbas.jme.display.matchTree(rule,studentTree,true);\n// If not, take away marks\nif(!m) {\n this.multCredit(0,'You haven\\'t simplified: your answer is not in the form $\\\\frac{?}{\\\\cdot}a^n$.');\n}", "order": "after"}}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "unitTests": [], "checkVariableNames": false, "vsetRangePoints": 5, "checkingType": "absdiff", "showPreview": true, "extendBaseMarkingAlgorithm": true}], "unitTests": [], "extendBaseMarkingAlgorithm": true, "prompt": "Write $\\displaystyle\\simplify{{b}*a^{x}/({g}*a^{y})}$ as a number multiplied by a single power of $a$.
\n$\\displaystyle\\simplify{{b}*a^{x}/({g}*a^{y})} =$ [[0]].
\n"}, {"steps": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "type": "information", "showCorrectAnswer": true, "unitTests": [], "marks": 0, "prompt": "Use the rule: $a^\\frac{1}{m} = \\sqrt[m]{a}$.
", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customMarkingAlgorithm": ""}], "type": "gapfill", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "customMarkingAlgorithm": "", "scripts": {}, "stepsPenalty": "1", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "sortAnswers": false, "gaps": [{"expectedVariableNames": [], "checkingAccuracy": 0.001, "answerSimplification": "basic", "marks": "2", "variableReplacements": [], "checkingType": "absdiff", "vsetRange": [0, 1], "unitTests": [], "vsetRangePoints": 5, "customMarkingAlgorithm": "", "showPreview": true, "musthave": {"partialCredit": 0, "message": "You must input your answer as a single power of a.
", "strings": ["^", "(", ")"], "showStrings": true}, "type": "jme", "failureRate": 1, "showCorrectAnswer": true, "checkVariableNames": false, "scripts": {}, "notallowed": {"partialCredit": 0, "message": "You must input your answer as a single power of a.
", "strings": ["sqrt", "root"], "showStrings": true}, "variableReplacementStrategy": "originalfirst", "answer": "a^(1/{d})", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true}], "unitTests": [], "extendBaseMarkingAlgorithm": true, "prompt": "\nWrite $\\sqrt[\\var{d}]{a}$ as a single power of $a$.
\n$\\sqrt[\\var{d}]{a} =$ [[0]].
\n\n"}, {"steps": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "type": "information", "showCorrectAnswer": true, "unitTests": [], "marks": 0, "prompt": "Use the rule: $a^\\frac{n}{m} = \\sqrt[m]{a^n}$.
", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "customMarkingAlgorithm": ""}], "type": "gapfill", "showCorrectAnswer": true, "marks": 0, "variableReplacements": [], "customMarkingAlgorithm": "", "scripts": {}, "stepsPenalty": "1", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "sortAnswers": false, "gaps": [{"expectedVariableNames": [], "checkingAccuracy": 0.001, "type": "jme", "failureRate": 1, "showCorrectAnswer": true, "notallowed": {"partialCredit": 0, "message": "You must enter your answer as a single power of a.
", "strings": ["root"], "showStrings": true}, "marks": "2", "answer": "a^({c}/{q})", "variableReplacements": [], "vsetRange": [0, 1], "customMarkingAlgorithm": "", "scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "unitTests": [], "checkVariableNames": false, "vsetRangePoints": 5, "checkingType": "absdiff", "showPreview": true, "extendBaseMarkingAlgorithm": true, "musthave": {"partialCredit": 0, "message": "You must enter your answer as a single power of a.
", "strings": ["^", "(", ")"], "showStrings": true}}], "unitTests": [], "extendBaseMarkingAlgorithm": true, "prompt": "Write $\\sqrt[\\var{q}]{a^\\var{c}}$ as a single power of $a$.
\n$\\sqrt[\\var{q}]{a^\\var{c}} =$ [[0]].
\n"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "extensions": [], "functions": {}, "preamble": {"js": "", "css": ""}, "ungrouped_variables": ["x", "y", "c", "d", "p", "q", "b", "g"], "statement": "Simplify each expression down to its simplest form. Recall that $a^{0} = 1$ for any number $a$.
", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "emma rand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/115/"}, {"name": "Elliott Fletcher", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1591/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "emma rand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/115/"}, {"name": "Elliott Fletcher", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1591/"}]}