// Numbas version: finer_feedback_settings {"name": "David's copy of Chain rule - log of binomial", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "
Differentiate the following function $f(x)$ using the chain rule.
", "preamble": {"js": "", "css": ""}, "showQuestionGroupNames": false, "functions": {}, "ungrouped_variables": ["a", "c", "b", "s2", "s1", "m"], "metadata": {"description": "Differentiate $\\displaystyle \\ln((ax+b)^{m})$
", "licence": "Creative Commons Attribution 4.0 International", "notes": "\n\t\t\n\t\t
1/08/2012:
\n\t\tAdded tags.
\n\t\tAdded description.
\n\t\tChecked calculation. OK.
\n\t\tAdded information about Show steps. Altered to 0 marks lost rather than 1.
\n\t\tGot rid of a redundant ruleset.
\n\t\tImproved display in prompt.
\n\t\tChecking range chosen so that the denominator of the result is never 0.
\n\t\t\n\t\t"}, "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "parts": [{"type": "gapfill", "gaps": [{"checkvariablenames": false, "marks": 3, "vsetrange": [5, 6], "answersimplification": "std", "checkingaccuracy": 0.001, "vsetrangepoints": 5, "checkingtype": "absdiff", "showCorrectAnswer": true, "scripts": {}, "showpreview": true, "type": "jme", "expectedvariablenames": [], "answer": "({m*a})/({a}x+{b})"}], "steps": [{"type": "information", "marks": 0, "showCorrectAnswer": true, "prompt": "\n\t\t\t\t\t \n\t\t\t\t\t \n\t\t\t\t\t
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.
\\[\\simplify[std]{f(x) = ln(({a}x+{b})^{m})}\\]
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\tClick on Show steps for more information. You will not lose any marks by doing so.
\n\t\t\t", "stepsPenalty": 0}], "tags": ["Calculus", "MAS1601", "Steps", "chain rule", "checked2015", "derivative of a function of a function", "differentiation", "function of a function", "logarithm laws", "logarithms"], "advice": "\n\t \n\t \n\t$\\simplify[std]{f(x) = ln(({a}x+{b})^{m})}$
First note that we can simplify this by using the rule that $\\simplify[std]{ln(a^r)=r*ln(a)}$.
Hence $\\simplify[std]{f(x) = ln(({a}x+{b})^{m})={m}ln({a}x+{b})}$
So we need to differentiate $\\simplify[std]{ln({a}x+{b})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.
For this example, we let $u=\\simplify[std]{{a}x +{b}}$ and we have $f(u)=\\simplify[std]{{m}*ln(u)}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{a}}\\\\\n\t \n\t \\frac{df(u)}{du} &=& \\simplify[std]{{m}/u} \\end{eqnarray*}\\]
Hence on substituting into the chain rule above we get:
\n\t \n\t \n\t \n\t\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({a}) * ({m}/u)}\\\\\n\t \n\t &=& \\simplify[std]{{a*m}/({a}x+{b})}\n\t \n\t \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{{a}x+{b}}$.