// Numbas version: exam_results_page_options {"name": "ggd kgv lagere school", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "ggd kgv lagere school", "tags": [], "metadata": {"description": "

Show a list of the factors of a number.

\n

Works by testing each number up to \$n\$ for divisibility by \$n\$, so won't do well with really big numbers. Certainly fast enough for numbers up to 4 or 5 digits.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "extensions": [], "variables": {"factors": {"name": "factors", "group": "Ungrouped variables", "definition": "filter(x|n, x, 1..n)", "description": "", "templateType": "anything"}, "getal1": {"name": "getal1", "group": "Ungrouped variables", "definition": "random(6,8,9,10,12,15,18,20)", "description": "", "templateType": "anything"}, "delersgetal2": {"name": "delersgetal2", "group": "Ungrouped variables", "definition": "filter(x|getal2, x, 1..n)", "description": "", "templateType": "anything"}, "getal2": {"name": "getal2", "group": "Ungrouped variables", "definition": "random(21,25,30,32,35,36,40)", "description": "", "templateType": "anything"}, "ggd": {"name": "ggd", "group": "Ungrouped variables", "definition": "gcd(getal1,getal2)", "description": "", "templateType": "anything"}, "kgv": {"name": "kgv", "group": "Ungrouped variables", "definition": "lcm(getal1,getal2)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(10000..20000)", "description": "", "templateType": "anything"}, "delersgetal1": {"name": "delersgetal1", "group": "Ungrouped variables", "definition": "filter(x|getal1, x, 1..n)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "factors", "getal1", "getal2", "ggd", "kgv", "delersgetal1", "delersgetal2"], "variable_groups": [], "functions": {"join_and": {"parameters": [["list", "list"]], "type": "string", "language": "jme", "definition": "if(len(list)=1, join(list,''), join(list[0..len(list)-1],', ')+' and '+list[-1])"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

a) Zoek de ggd of grootste gemene deler van \$\\var{getal1}\$ en \$\\var{getal2}\$

\n

[[0]]

b) Zoek de kgv of kleinste gemene veelvoud van \$\\var{getal1}\$ en \$\\var{getal2}\$

\n

[[1]]

\n

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

De delers van \$\\var{getal1}\$ zijn \$\\var{latex(join(delersgetal1,', '))}\$.

\n

De delers van \$\\var{getal2}\$ zijn \$\\var{latex(join(delersgetal2,', '))}\$.

\n

#### Zoek nu het grootste getal dat in elke lijst voorkomt.

\n

\n

De veelvouden van \$\\var{getal1}\$ zijn \$0\$, \$\\var{getal1}\$, \$\\var{getal1*2}\$,\$\\var{getal1*3}\$ ...

\n

De veelvouden van \$\\var{getal2}\$ zijn \$0\$, \$\\var{getal2}\$, \$\\var{getal2*2}\$,\$\\var{getal2*3}\$ ...

\n

#### Zoek nu het kleinste getal behalve 0 dat in elke lijst voorkomt. Misschien moet je de 2 lijsten eerst verder uitrekenen.

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ggd", "maxValue": "ggd", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "kgv", "maxValue": "kgv", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Johan Maertens", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1301/"}]}]}], "contributors": [{"name": "Johan Maertens", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1301/"}]}