// Numbas version: exam_results_page_options {"name": "Gemma's copy of Binomial series for Natural exponent", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "preventleave": false, "showfrontpage": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "prompt": "

Calculate the coefficient of \\(x^{\\var{k}}\\)  [[0]]using the Binomial Theorem.

", "variableReplacementStrategy": "originalfirst", "scripts": {}, "showFeedbackIcon": true, "unitTests": [], "showCorrectAnswer": true, "type": "gapfill", "marks": 0, "sortAnswers": true, "gaps": [{"type": "numberentry", "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "allowFractions": true, "unitTests": [], "minValue": "{c}", "notationStyles": ["plain", "en", "si-en"], "mustBeReducedPC": 0, "marks": 1, "scripts": {}, "showCorrectAnswer": true, "maxValue": "{c}", "correctAnswerFraction": false, "mustBeReduced": false, "correctAnswerStyle": "plain", "variableReplacements": []}], "variableReplacements": []}], "type": "question", "name": "Gemma's copy of Binomial series for Natural exponent", "metadata": {"description": "

Binomial series for Natural exponent

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "variable_groups": [], "variables": {"c": {"templateType": "anything", "description": "", "name": "c", "group": "Ungrouped variables", "definition": "comb({n},{k})*{a}^({n}-{k})*{b}^{k}"}, "a": {"templateType": "randrange", "description": "", "name": "a", "group": "Ungrouped variables", "definition": "random(1..6#1)"}, "b": {"templateType": "randrange", "description": "", "name": "b", "group": "Ungrouped variables", "definition": "random(1..6#1)"}, "k": {"templateType": "anything", "description": "", "name": "k", "group": "Ungrouped variables", "definition": "random(2..{n}-1)"}, "n": {"templateType": "randrange", "description": "", "name": "n", "group": "Ungrouped variables", "definition": "random(3..10#1)"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {}, "statement": "

Given the expression \\((\\var{a}+\\var{b}x)^{\\var{n}}\\)

", "tags": [], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/", "name": "Frank Doheny"}, {"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2440/", "name": "Gemma Crowe"}], "functions": {}, "advice": "

The binomial series expansion for an expression of the form \\((a+bx)^n\\) where \\(n\\) is a Natural number is given by:

\n

\\((a+bx)^n=\\tbinom{n}{0}(a)^n(bx)^{0}+\\tbinom{n}{1}(a)^{n-1}(bx)^{1}+\\tbinom{n}{2}(a)^{n-2}(bx)^{2}+...\\tbinom{n}{k}(a)^{n-k}(bx)^{k}+...\\tbinom{n}{n}(a)^{0}(bx)^{n}\\)

\n

In this example  \\(n=\\var{n}\\),  \\(k=\\var{k}\\),  \\(a=\\var{a}\\)  and  \\(b=\\var{b}\\).

\n

So the coefficient of \\(x^{\\var{k}}\\) is given by \\(\\tbinom{\\var{n}}{\\var{k}}*\\var{a}^{\\var{n}-\\var{k}}*\\var{b}^{\\var{k}}=\\var{c}\\).

\n

", "extensions": [], "ungrouped_variables": ["a", "b", "n", "c", "k"], "preamble": {"css": "", "js": ""}}]}], "contributors": [{"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/", "name": "Frank Doheny"}, {"profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2440/", "name": "Gemma Crowe"}]}