// Numbas version: exam_results_page_options {"name": "Face, Place and Actual Value (decimals)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "", "maxRuns": 100}, "tags": [], "name": "Face, Place and Actual Value (decimals)", "preamble": {"js": "", "css": ""}, "extensions": [], "functions": {}, "variable_groups": [{"name": "try this", "variables": ["tenthsF", "hundredthsF", "thousandthsF", "tenthsA", "hundredthsA", "thousandthsA", "dec", "b"]}], "parts": [{"type": "gapfill", "unitTests": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "sortAnswers": false, "marks": 0, "steps": [{"type": "information", "scripts": {}, "variableReplacementStrategy": "originalfirst", "unitTests": [], "showFeedbackIcon": true, "prompt": "

The face value of a digit is simply the digit itself. It is all about what the digit looks like.

\n

For example, the face value of \$3\$ in the number \$1.234\$ is just \$3\$.

", "customMarkingAlgorithm": "", "variableReplacements": [], "marks": 0, "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true}], "stepsPenalty": "3", "variableReplacementStrategy": "originalfirst", "prompt": "

Please enter the face value of the following digits from the decimal \$\\var{dec}\$ in the gaps below.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Digit \$\\var{tenthsF}\$ \$\\var{hundredthsF}\$ \$\\var{thousandthsF}\$ Face Value [[0]] [[1]] [[2]]

The place value of a digit is the 'value' of the 'column' it is written in. It is all about where the digit is. To the right of the decimal point we have the tenths column, next we have the hundredths column,  and then we have the thousandths column. The place value for something in the tenths column is \$0.1\$, the place value for something in the hundredths column is \$0.01\$ and the place value for something in the thousandths column is \$0.001\$.

\n

For example, the place value of the \$3\$ in the number \$1.234\$ is \$0.01\$.

", "customMarkingAlgorithm": "", "variableReplacements": [], "marks": 0, "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true}], "stepsPenalty": "3", "variableReplacementStrategy": "originalfirst", "prompt": "

Please enter the place value of the following digits from the decimal \$\\var{dec}\$ in the gaps below.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Digit \$\\var{tenthsF}\$ \$\\var{hundredthsF}\$ \$\\var{thousandthsF}\$ Place Value [[0]] [[1]] [[2]]

The actual value of a digit is the face value times the place value. It is all about what that digit actually adds/brings to the number, what it is actually worth or what it actually represents.

\n

For example, the actual value of the digit \$3\$ in the number \$1.234\$ is \$0.03\$ (since the \$3\$ in \$1.234\$ actually stands for \$0.03\$).

", "customMarkingAlgorithm": "", "variableReplacements": [], "marks": 0, "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true}], "stepsPenalty": "3", "variableReplacementStrategy": "originalfirst", "prompt": "

Please enter the actual value of the following digits from the decimal \$\\var{dec}\$ in the gaps below.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Digit \$\\var{tenthsF}\$ \$\\var{hundredthsF}\$ \$\\var{thousandthsF}\$ Actual Value [[0]] [[1]] [[2]]

Useful for a review of the base 10 number system before introducing different bases and also just ensuring students understand how the base 10 system works.