// Numbas version: finer_feedback_settings {"name": "Implicit Differentiation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "scripts": {}, "type": "gapfill", "variableReplacements": [], "prompt": "
Input your answer here:
\n$\\displaystyle \\frac{dy}{dx}= $ [[0]]
\nInput all numbers as integers not as decimals.
", "unitTests": [], "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "gaps": [{"showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "type": "jme", "variableReplacements": [], "vsetRange": [0, 1], "showPreview": true, "checkingAccuracy": 0.001, "checkVariableNames": false, "unitTests": [], "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "answer": "(({( - a)} + ( - (2 * x))-{d}y) / ({b} + (2 * y)+{d}x))", "failureRate": 1, "checkingType": "absdiff", "answerSimplification": "all,!collectNumbers", "vsetRangePoints": 5, "marks": 2, "scripts": {}, "notallowed": {"partialCredit": 0, "strings": ["."], "message": "Input all numbers as integers or as fractions, not as decimals.
", "showStrings": false}, "showCorrectAnswer": true}], "customMarkingAlgorithm": "", "marks": 0, "showCorrectAnswer": true}], "extensions": [], "preamble": {"js": "", "css": ""}, "variables": {"b": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "b", "definition": "c-1"}, "c": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "c", "definition": "random(3..9 except -a+1)"}, "d": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "d", "definition": "random(-3..3 except[0,1])"}, "a": {"group": "Ungrouped variables", "description": "", "templateType": "anything", "name": "a", "definition": "-random(2..9)"}}, "statement": "You are given the following relation between $x$ and $y$
\\[\\simplify{x^2+y^2+{d}x y+{a}x+{b}y}=\\var{c}\\]
where $y=y(x)$. Find $\\dfrac{dy}{dx}$.
Implicit differentiation.
\n \t\tGiven $x^2+y^2+dxy +ax+by=c$ find $\\displaystyle \\frac{dy}{dx}$ in terms of $x$ and $y$.
\n \t\tAlso find two points on the curve where $x=0$ and find the equation of the tangent at those points.
\n \t\t\n \t\t"}, "advice": "
Hint:
\nNote that we regard $y$ as a function of $x$. Hence we have (using the Chain Rule): $\\displaystyle \\frac{d(y^2)}{dx} = 2y\\frac{dy}{dx}$. And, using the Product Rule: $\\displaystyle \\frac{d(xy)}{dx} = y+x\\frac{dy}{dx}$.
\nNow differentiate both sides of the relation with respect to $x$. Below is a worked solution to the problem, but only look at it if you are struggling.
\na) By differentiating both sides of the equation implicitly we get
\\[2x + \\simplify[all,!collectNumbers]{2y*Diff(y,x,1) +{d}(y+x*Diff(y,x,1))+ {a} + {b} *Diff(y,x,1)} = 0\\]
Collecting terms in $\\displaystyle\\frac{dy}{dx}$ and rearranging the equation we get
\\[( \\simplify[all,!collectNumbers]{({b} + 2y+{d}x)} )\\frac{dy}{dx} = \\simplify[all,!collectNumbers]{{ -a} -2x-{d}y}\\] and hence on further rearranging:
\\[\\frac{dy}{dx} = \\simplify[all,!collectNumbers]{({ - a} - 2 * x-{d}y) / ({b} + (2 * y)+{d}x)}\\]
\n\n", "variablesTest": {"maxRuns": 100, "condition": ""}, "variable_groups": [], "functions": {}, "ungrouped_variables": ["a", "c", "b", "d"], "type": "question", "contributors": [{"name": "Gareth Woods", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/978/"}, {"name": "Antonia Wilmot-Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2410/"}, {"name": "Leticija Dubickaite", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2461/"}]}]}], "contributors": [{"name": "Gareth Woods", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/978/"}, {"name": "Antonia Wilmot-Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2410/"}, {"name": "Leticija Dubickaite", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2461/"}]}