// Numbas version: finer_feedback_settings {"name": "Ex 4 Determinant of a 3 x 3 Matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"a": {"templateType": "anything", "group": "Unnamed group", "description": "", "name": "a", "definition": "matrix([ [a11,a12,a13],[a21,a22,a23],[a31,a32,a33] ])"}, "a23": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Matrix element

", "name": "a23", "definition": "random(-5..5)"}, "a12": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Matrix element

", "name": "a12", "definition": "random(-5..5)"}, "a32": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Matrix element

", "name": "a32", "definition": "random(-5..5)"}, "m2": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Submatrix

", "name": "m2", "definition": "(a21*a33)-(a23*a31)"}, "a21": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Matrix element

", "name": "a21", "definition": "random(-5..5)"}, "a13": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Matrix element

", "name": "a13", "definition": "random(-5..5)"}, "m1": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Submatrix

", "name": "m1", "definition": "(a22*a33)-(a23*a32)"}, "a22": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Matrix element

", "name": "a22", "definition": "random(-6..6 except 0)"}, "a31": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Matrix element

", "name": "a31", "definition": "random(-5..5)"}, "a33": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Matrix element

", "name": "a33", "definition": "random(-6..6 except 0)"}, "m3": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Submatrix

", "name": "m3", "definition": "(a21*a32)-(a22*a31)"}, "a11": {"templateType": "anything", "group": "Ungrouped variables", "description": "

Matrix element

", "name": "a11", "definition": "random(-6..6 except 0)"}}, "variablesTest": {"maxRuns": 100, "condition": ""}, "variable_groups": [{"variables": ["a"], "name": "Unnamed group"}], "name": "Ex 4 Determinant of a 3 x 3 Matrix", "statement": "

Consider the $3 \\times 3$ matrix,

\n

\\begin{align} \\mathrm{A} &= \\var{a} \\end{align}

", "parts": [{"scripts": {}, "variableReplacements": [], "marks": 0, "type": "gapfill", "gaps": [{"scripts": {}, "variableReplacements": [], "maxValue": "det(a)", "type": "numberentry", "mustBeReducedPC": 0, "minValue": "det(a)", "mustBeReduced": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "marks": 0.5, "correctAnswerStyle": "plain", "showCorrectAnswer": true, "allowFractions": false, "showFeedbackIcon": true}], "showCorrectAnswer": true, "prompt": "

Calculate the determinant of the matrix.

\n

$\\operatorname{det}\\left( \\mathrm{A}\\right) = $ [[0]]

\n

", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true}], "functions": {}, "preamble": {"css": "", "js": ""}, "tags": [], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers"]}, "advice": "

Determinant of a $3 \\times 3$ matrix

\n

The determinant of a matrix $\\mathrm{M} = \\begin{pmatrix} a&b&c \\\\ d&e&f \\\\ g&h&i \\end{pmatrix}$ can be calculated by using cofactor expansion. Expanding along the first row,

\n

\\[ \\det\\left(\\mathrm{M}\\right) = a \\cdot \\det \\begin{pmatrix} e&f \\\\ h&i \\end{pmatrix}- b \\cdot \\det \\begin{pmatrix} d&f \\\\ g&i \\end{pmatrix} + c \\cdot \\det \\begin{pmatrix} d&e \\\\ g&h \\end{pmatrix}\\]

\n

Thus for our example we have:

\n

\\[\\begin{align} \\det \\begin{pmatrix} e&f \\\\ h&i \\end{pmatrix} &= \\simplify[]{({a22}*{a33})-({a23}*{a32}) = {m1}} \\\\ \\det \\begin{pmatrix} d&f \\\\ g&i \\end{pmatrix} &= \\simplify[]{({a21}*{a33})-({a23}*{a31}) = {m2}} \\\\ \\det \\begin{pmatrix} d&e \\\\ g&h \\end{pmatrix} &=\\simplify[]{ ({a21}*{a32})-({a22}*{a31}) ={m3}}  \\end{align}\\]

\n

and so

\n

\\[\\begin{align} \\det\\left(\\mathrm{A}\\right) = (\\simplify[]{{a11}*{m1}})-(\\simplify[]{{a12}*{m2}})+(\\simplify[]{{a13}*{m3}}) = \\simplify[]{{det(a)}}  \\end{align}\\]

", "extensions": [], "ungrouped_variables": ["a11", "a12", "a13", "a21", "a22", "a23", "a31", "a32", "a33", "m1", "m2", "m3"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Find the determinant of a $3 \\times 3$ matrix.

"}, "type": "question", "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}]}], "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}]}