// Numbas version: finer_feedback_settings {"name": "Equilibrium of a rigid body: cantilever beam", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 12, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/12/edit"}, "name": "Angle quantity 2020", "short_name": "angle", "description": "

Adjusts all angles to 0 < $\\theta$ < 360.

\n

Accepts '°' and 'deg' as units.

\n

Penalizes if not close enough or no units.

\n

90° = -270° = 450°

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "plain_string(settings['expected_answer']) ", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": false}}, "can_be_gap": true, "can_be_step": true, "marking_script": "original_student_scalar:\nmatchnumber(studentAnswer,['plain','en'])[1]\n\nstudent_scalar:\nmod(original_student_scalar,360)\n\n\nstudent_unit:\nstudentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]\n\ninterpreted_unit:\nif(trim(student_unit)='\u00b0','deg',student_unit)\n\ninterpreted_answer:\nqty(mod(student_scalar,360),'deg')\n\nclose:\nwithintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))\n\ncorrect_scalar:\nmod(scalar(settings['expected_answer']),360)\n\nright:\nwithintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))\n\ngood_unit:\nsame(qty(1,interpreted_unit),qty(1,'deg'))\n\nmark:\nassert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))", "marking_notes": [{"name": "original_student_scalar", "description": "

Retuns the scalar part of students answer (which is a quantity) as a number.

", "definition": "matchnumber(studentAnswer,['plain','en'])[1]"}, {"name": "student_scalar", "description": "

Normalize angle with mod 360

", "definition": "mod(original_student_scalar,360)\n"}, {"name": "student_unit", "description": "

matchnumber(studentAnswer,['plain','en'])[0] is a string \"12.34\"

", "definition": "studentAnswer[len(matchnumber(studentAnswer,['plain','en'])[0])..len(studentAnswer)]"}, {"name": "interpreted_unit", "description": "

Allows student to use degree symbol or 'deg' for units.

", "definition": "if(trim(student_unit)='\u00b0','deg',student_unit)"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(mod(student_scalar,360),'deg')"}, {"name": "close", "description": "", "definition": "withintolerance(student_scalar, correct_scalar,decimal(settings['close_tol']))"}, {"name": "correct_scalar", "description": "

Normalize expected_answer with mod 360

", "definition": "mod(scalar(settings['expected_answer']),360)"}, {"name": "right", "description": "", "definition": "withintolerance(student_scalar, correct_scalar, decimal(settings['right_tol']))"}, {"name": "good_unit", "description": "", "definition": "same(qty(1,interpreted_unit),qty(1,'deg'))"}, {"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "assert(close,incorrect('Incorrect.');end());\nif(right,correct('Correct angle.'), set_credit(1 - settings['close_penalty'],'Angle is close.'));\nassert(good_unit,sub_credit(settings['unit_penalty'], 'Missing or incorrect units.'))"}], "settings": [{"name": "expected_answer", "label": "Expected Answer", "help_url": "", "hint": "Expected angle as a quantity.", "input_type": "code", "default_value": "qty(30,'deg')", "evaluate": true}, {"name": "unit_penalty", "label": "Unit penalty", "help_url": "", "hint": "Penalty for not including degree sign or 'deg'.", "input_type": "percent", "default_value": "20"}, {"name": "close_penalty", "label": "Close Penalty", "help_url": "", "hint": "Penalty for close answer.", "input_type": "percent", "default_value": "20"}, {"name": "close_tol", "label": "Close", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked close.   ", "input_type": "code", "default_value": "0.5", "evaluate": false}, {"name": "right_tol", "label": "Right ", "help_url": "", "hint": "Angle must be $\\pm$ this many degrees to be marked correct.  ", "input_type": "code", "default_value": "0.1", "evaluate": false}], "public_availability": "restricted", "published": false, "extensions": ["quantities"]}, {"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "

A value with units marked right if within an adjustable % error of the correct value.  Marked close if within a wider margin of error.

", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "

Modify the unit portion of the student's answer by

\n

1. replacing \"ohms\" with \"ohm\"  case insensitive

\n

2. replacing '-' with ' ' 

\n

3. replacing '°' with ' deg' 

\n

to allow answers like 10 ft-lb and 30°

", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "

This fixes the student answer for two common errors.  

\n

If student_units are wrong  - replace with correct units

\n

If student_scalar has the wrong sign - replace with right sign

\n

If student makes both errors, only one gets fixed.

", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "

Only marked close if the student actually has the right sign.

", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units.  if correct answer is 100 N and close is ±1%,
99  N is accepted.", "input_type": "percent", "default_value": "75"}, {"name": "C2", "label": "No units or wrong sign", "help_url": "", "hint": "Partial credit for forgetting units or using wrong sign.
If the correct answer is 100 N, both 100 and -100 N are accepted.", "input_type": "percent", "default_value": "50"}, {"name": "C3", "label": "Close, no units.", "help_url": "", "hint": "Partial Credit for close value but forgotten units.
This value would be close if the expected units were provided.  If the correct answer is 100 N, and close is ±1%,
99 is accepted.", "input_type": "percent", "default_value": "25"}], "public_availability": "always", "published": true, "extensions": ["quantities"]}], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Equilibrium of a rigid body: cantilever beam", "tags": ["angle_from_ref", "equilibrium", "Equilibrium", "fixed support", "mechanics", "Mechanics", "rigid body", "Rigid Body", "statics", "Statics"], "metadata": {"description": "

Determine the reactions supporting a cantilever beam carrying concentrated forces and moments.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

{geogebra_applet('v5xfnaym',[['A',A],['B',B],['L',L],['units','\"'+units[1]+'\"'],['fa',FA], ['fc',FC], ['M',M]])}

\n

A beam of length  $L$ = {L} {units[1]} is supported by a fixed (cantilever) support at $O$. Detemine the reactions at $O$ when the beam supports these loads: 

\n

$A$ = {magA} {units[0]}, $B$ = {abs(M)} {units[0]}-{units[1]} and $C$ = {magC} {units[0]}, as shown.

", "advice": "

Draw a free body diagaram of the beam, then apply the equations of equilibrium.

\n

\n

$\\Sigma M = 0$

\n

$M_O + M_A + M_B + M_C = 0$

\n

$M_A = d_1 A_y$ = ({OA}) ({qty(abs(FA[1]),units[0])}) = {abs(MA)} {if(sign(MA)>0,'counterclockwise','clockwise')}

\n

$M_B =$ {abs(MB)} {if(sign(MB)>0,'counterclockwise','clockwise')}

\n

$M_C = L C_y$ = ({OC}) ({format(qty(abs(FC[1]),units[0]))}) = {format(abs(MC))} {if(sign(MC)>0,'counterclockwise','clockwise')}

\n

$ M_O = - ( \\var{format(MA)} + \\var{format(MB)} + \\var{format(MC)} ) = \\var{format(abs(MO))}$ {if(sign(MO)>0,'counterclockwise','clockwise')}

\n

 

\n

$\\Sigma F_x = 0$

\n

$O_x + A_x + C_x = 0$

\n

$O_x = 0 - C_x  =  \\var{format(qty(abs(FO[0]), units[0]))}$ {if(sign(FO[0])>=0,'right','left')}

\n

 

\n

$\\Sigma F_y = 0$

\n

$O_y + A_y + C_y = 0$

\n

$O_y = - (A_y + C_y)  = - ( \\var{FA[1]} + \\var{siground(FC[1],4)} )= \\var{format(qty(abs(FO[1]), units[0]))} $  {if(sign(FO[1])>=0,'up','down')}

\n

 

\n

Resolve $O_x$ and $O_y$ to get

\n

Force $O = \\var{format(qty(abs(FO), units[0]))} $ at an angle of {format(dirO)} from the positve x-axis.

", "rulesets": {}, "extensions": ["geogebra", "quantities"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"FO": {"name": "FO", "group": "output", "definition": "-(FA+FC)", "description": "

The resultant force at O as a vector.

", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Input", "definition": "random(0.2..0.8#0.1)", "description": "", "templateType": "anything", "can_override": false}, "FC": {"name": "FC", "group": "Input", "definition": "magC vector(cos(radians(theta_C)),sin(radians(theta_C)))", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Input", "definition": "random(A..0.9#0.1)", "description": "", "templateType": "anything", "can_override": false}, "OA": {"name": "OA", "group": "output", "definition": "qty(A L, units[1])", "description": "

distance from O to A

", "templateType": "anything", "can_override": false}, "MA": {"name": "MA", "group": "output", "definition": "qty(cross(vector(scalar(OA),0,0),vector(FA[0],\n FA[1],0))[2],\nunits[0] + \" \" + units[1])\n\n", "description": "

Moment of force A about point O.

", "templateType": "anything", "can_override": false}, "units": {"name": "units", "group": "Input", "definition": "random(['N','m'],['lb','ft'])", "description": "", "templateType": "anything", "can_override": false}, "debug": {"name": "debug", "group": "Input", "definition": "false", "description": "", "templateType": "anything", "can_override": false}, "MB": {"name": "MB", "group": "output", "definition": "qty(M,units[0] + \" \" + units[1])\n", "description": "

The concentrated moment.

", "templateType": "anything", "can_override": false}, "magA": {"name": "magA", "group": "Input", "definition": "random(10..150#10)", "description": "", "templateType": "anything", "can_override": false}, "OB": {"name": "OB", "group": "output", "definition": "qty(B L, units[1])", "description": "

distance from O to B

", "templateType": "anything", "can_override": false}, "L": {"name": "L", "group": "Input", "definition": "if(units[1]='ft',random(2..12#2),random(1..5))", "description": "", "templateType": "anything", "can_override": false}, "MagC": {"name": "MagC", "group": "Input", "definition": "random(10..150#10)", "description": "", "templateType": "anything", "can_override": false}, "dirO": {"name": "dirO", "group": "output", "definition": "qty(mod(degrees(atan2(FO[1],FO[0])),360),'deg')", "description": "", "templateType": "anything", "can_override": false}, "FA": {"name": "FA", "group": "Input", "definition": "MagA vector(0,random(1,-1))", "description": "", "templateType": "anything", "can_override": false}, "OC": {"name": "OC", "group": "output", "definition": "qty(L, units[1])", "description": "

distance from O to C

", "templateType": "anything", "can_override": false}, "MO": {"name": "MO", "group": "output", "definition": "-(MA + MB + MC)", "description": "

The reaction moment at O.

", "templateType": "anything", "can_override": false}, "M": {"name": "M", "group": "Input", "definition": "random(100..500#25) random(1,-1)", "description": "

The magnitude of the moment.

", "templateType": "anything", "can_override": false}, "theta_c": {"name": "theta_c", "group": "Input", "definition": "random(0..355#5 except [0,90,180,270])", "description": "", "templateType": "anything", "can_override": false}, "MC": {"name": "MC", "group": "output", "definition": "qty(cross(vector(scalar(OC),0,0),\n vector(FC[0],FC[1],0))[2],\n units[0] + \" \" + units[1])\n \n \n ", "description": "

Moment of force C about point O.

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "B-A > 0.2", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Input", "variables": ["L", "A", "B", "units", "FA", "magA", "MagC", "theta_c", "FC", "M", "debug"]}, {"name": "output", "variables": ["OA", "OC", "OB", "MA", "MC", "MB", "MO", "FO", "dirO"]}], "functions": {"format": {"parameters": [["q", "quantity"]], "type": "string", "language": "jme", "definition": "string(siground(q,4))"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Moment at O", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Determine the magnitude and direction of the moment at the fixed support at $O$.

\n

$M_O$ = [[0]]  [[1]]  {format(MO)}

", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "$M_O$", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "abs(MO)", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "1_n_2", "useCustomName": true, "customName": "Direction", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["Counterclockwise", "Clockwise", "Neither"], "matrix": "[if(sign(MO)>0,5,0),if(sign(MO)<0,5,0),if(sign(MO)=0,5,0)]"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Force at O", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "interpreted_angle: // a qty string corrected to standard angle\n student_angle[2] + student_angle[1] * student_angle[0] + student_units\n\nmagnitude:\n studentAnswer[3]\n\nstudent_angle:\n [mod(matchnumber(studentAnswer[0],['plain','en'])[1],360), // angle\n [1,-1][indices(studentAnswer[1],[true])[0]], // ccw = 1 cw = -1\n [0,90,180,-90][indices(studentAnswer[2],[true])[0]]] // reference axis\n\nstudent_units:\n studentAnswer[0][len(matchnumber(studentAnswer[0],['plain','en'])[0])..len(studentAnswer[0])]\n\ninterpreted_answers:\n [interpreted_angle, studentAnswer[1], studentAnswer[2], studentAnswer[3]]\n\ngap_feedback (Feedback on each of the gaps):\n map(\n try(\n let(\n result, submit_part(gaps[gap_number][\"path\"],answer),\n gap, gaps[gap_number],\n name, gap[\"name\"], \n noFeedbackIcon, not gap[\"settings\"][\"showFeedbackIcon\"],\n assert(name=\"\" or len(gaps)=1,feedback(translate('part.gapfill.feedback header',[\"name\": name])));\n concat_feedback(filter(x[\"op\"]<>\"warning\",x,result[\"feedback\"]), if(marks>0,result[\"marks\"]/marks,1), noFeedbackIcon);\n result\n ),\n err,\n fail(translate(\"part.gapfill.error marking gap\",[\"name\": gaps[gap_number][\"name\"], \"message\": err]))\n ),\n [gap_number,answer,index],\n zip([3,0],[studentAnswer[3], interpreted_angle],[1,2])\n )\n\n", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Determine the magnitude and direction of the reaction force at $O$.

\n

$O$ = [[3]]  at an angle of [[0]] measured [[1]] from the [[2]].

\n

{format(qty(abs(FO),units[0]))} at {format(dirO)}

", "gaps": [{"type": "angle", "useCustomName": true, "customName": "angle", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"expected_answer": "dirO", "unit_penalty": "20", "close_penalty": "20", "close_tol": "0.5", "right_tol": "0.2"}}, {"type": "1_n_2", "useCustomName": true, "customName": "sign", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["CCW", "CW"], "matrix": [0, 0], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": true, "customName": "ref", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["+x axis", "+y axis", "-x axis", "-y axis"], "matrix": [0, 0, 0, 0], "distractors": ["", "", "", ""]}, {"type": "engineering-answer", "useCustomName": true, "customName": "Magnitude", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(abs(FO),units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}]}], "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}