// Numbas version: finer_feedback_settings {"name": "Equilibrium of a rigid body: hand truck", "extensions": ["geogebra", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "
A value with units marked right if within an adjustable % error of the correct value. Marked close if within a wider margin of error.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "Modify the unit portion of the student's answer by
\n1. replacing \"ohms\" with \"ohm\" case insensitive
\n2. replacing '-' with ' '
\n3. replacing '°' with ' deg'
\nto allow answers like 10 ft-lb and 30°
", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "This fixes the student answer for two common errors.
\nIf student_units are wrong - replace with correct units
\nIf student_scalar has the wrong sign - replace with right sign
\nIf student makes both errors, only one gets fixed.
", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "Only marked close if the student actually has the right sign.
", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units. if correct answer is 100 N and close is ±1%,A hand truck on wheels. Easiest to solve by rotating coordinate system.
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "{geogebra_applet('kptuqdfk',[['α',alpha+\"°\"],['d1','\"'+string(d1)+'\"'],['d2','\"'+string(d2)+'\"'],['d3','\"'+string(d3)+'\"']])}
\nA hand truck is used to move a{random(' nitrogen', 'n oxygen', 'n R-134a', ' compressed air', ' refrigerant')} cylinder. Knowing that the combined weight of the truck and cylinder is {W} acting at the center of gravity $G$, determine the vertical force $A$ which must be applied to the handle to maintain the cylinder at this {alpha}° angle, and also the corresponding reaction at each of the two wheels.
\n\n\n", "advice": "Start by drawing a free body diagram and gathering the known values:
\n$W = \\var{W}, \\alpha = \\var{alpha}°, d_1 = \\var{d1}, d_2 = \\var{d2}$ and $d_3 = \\var{d3}$.
\n\nIt's easiest to solve this problem if you resolve the weight into components parallel and perpendicular to the axis of the cylinder, since the dimensions in these directions are given, so:
\n\n$W_{\\perp} = W \\cos \\alpha = \\var{display(W * cos(radians(alpha)))}$ and
\n$W_{\\|} = W \\sin \\alpha = \\var{display(W * sin(radians(alpha)))}$
\n\nTo find $A$, apply the sum of the moments about point $B$:
\n\n$\\begin{align} \\Sigma M_B &= 0\\\\ A d_3 + W_{\\|} d_1 &= W_{\\perp} d_2 \\\\ A &= \\dfrac{ W_{\\perp} d_2 -W_{\\|} d_1 }{d_3}\\\\ &= \\frac{\\var{display(W_perp)}(\\var{d2}) -\\var{display(W_par)}(\\var{d1}) }{\\var{d3}}\\\\&= \\var{display(A)}\\end{align}$
\n\nTo find B, the force on one wheel, apply the sum of the forces in the y-direction:
\n$\\begin{align}\\Sigma F_y &= 0\\\\ A - W + 2 B &= 0\\\\B &= \\frac{W-A}{2} \\\\&=\\frac{\\var{W} - \\var{display(A)}}{2}\\\\& = \\var{display(B)}\\end{align}$
", "rulesets": {}, "extensions": ["geogebra", "quantities"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"W_par": {"name": "W_par", "group": "solution", "definition": "W sin(radians(alpha))", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "(W-A)/2", "description": "", "templateType": "anything", "can_override": false}, "W": {"name": "W", "group": "Ungrouped variables", "definition": "qty(random(180..180#5),'lb')", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "qty(random(8..14),'in')", "description": "", "templateType": "anything", "can_override": false}, "d3": {"name": "d3", "group": "Ungrouped variables", "definition": "round(qty(random(36..40) cos(radians(alpha)),'in'),'1 in')\n \n ", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "qty(random(20..26#2),'in')", "description": "", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "Ungrouped variables", "definition": "random(40..60 except 45)", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "(-W_par d1 + W_perp d2)/d3", "description": "", "templateType": "anything", "can_override": false}, "W_perp": {"name": "W_perp", "group": "solution", "definition": "W cos(radians(alpha))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["alpha", "W", "d1", "d2", "d3", "A", "B"], "variable_groups": [{"name": "solution", "variables": ["W_perp", "W_par"]}], "functions": {"display": {"parameters": [["q", "quantity"]], "type": "string", "language": "jme", "definition": "string(siground(q,4))"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "Handle", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Determine the force on the handle:
\n$A =$ [[0]]
", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "A", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "A", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": true, "customName": "Wheels", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Determine the force acting on each wheel:
\n$B =$ [[0]]
", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "B", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "B", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}]}], "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}