// Numbas version: finer_feedback_settings {"name": "Jo-Ann's copy of Fraction multiplication", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"marks": 0, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "type": "gapfill", "scripts": {}, "gaps": [{"notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "type": "numberentry", "showCorrectAnswer": true, "mustBeReducedPC": 0, "mustBeReduced": false, "minValue": "{ab}/{gcd}", "marks": 1, "allowFractions": false, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "scripts": {}, "maxValue": "{ab}/{gcd}"}, {"notationStyles": ["plain", "en", "si-en"], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "type": "numberentry", "showCorrectAnswer": true, "mustBeReducedPC": 0, "mustBeReduced": false, "minValue": "{cd}/{gcd}", "marks": 1, "allowFractions": false, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "scripts": {}, "maxValue": "{cd}/{gcd}"}], "showCorrectAnswer": true, "prompt": "
$\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$ =
$\\displaystyle\\simplify{{k}/{j}}\\times\\var{f}\\frac{\\var{g}}{\\var{h}}$ =
$\\displaystyle\\bigg(\\frac{\\var{l_coprime}}{\\var{m_coprime}}\\bigg)^2= $
Helen went on holiday in Europe. She spent $\\displaystyle\\frac{\\var{aa}}{7}$ of her time on holiday in Spain. Whilst in Spain, she spent $\\displaystyle\\frac{\\var{dd}}{4}$ of her time in Barcelona.
\nIf her holiday lasted for $28$ days, how many days was she in Barcelona?
\nHelen was in Barcelona for [[0]] days.
"}], "metadata": {"description": "Several problems involving the multiplication of fractions, with increasingly difficult examples, including a mixed fraction and a squared fraction. The final part is a word problem.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Evaluate the following multiplications, giving each fraction in its simplest form.
", "tags": ["improper fractions", "mixed numbers", "multiplication of fractions", "multiplying fractions", "squared fraction", "taxonomy"], "variable_groups": [{"name": "Part a", "variables": ["a", "b", "c", "d", "a_coprime", "b_coprime", "c_coprime", "d_coprime", "gcd_ac", "gcd_bd", "ab", "cd", "gcd"]}, {"name": "Part b", "variables": ["f", "g", "g_coprime", "h", "h_coprime", "gcd_gh", "k", "k_coprime", "j", "j_coprime", "gcd_kj", "fh", "numif", "num", "denom", "gcda", "gcdb", "gcd2"]}, {"name": "Part d", "variables": ["aa", "bb", "cc", "dd", "ddcc", "ee"]}, {"name": "Part c", "variables": ["l", "m", "gcd_lm", "l_coprime", "m_coprime", "gcd_lcmc", "l_coprime2", "m_coprime2"]}], "advice": "To multiply $\\displaystyle\\frac{\\var{a_coprime}}{\\var{c_coprime}}\\times\\frac{\\var{b_coprime}}{\\var{d_coprime}}$, address the numerators and denominators separately.
\nMultiply the numerators across both fractions.
\n$\\var{a_coprime}\\times\\var{b_coprime}=\\var{ab}$,
\nand then multiply the denominators across both fractions.
\n$\\var{c_coprime}\\times\\var{d_coprime}=\\var{cd}$.
\nThe values of the multiplied numerators and denominators will be the numerator and denominator of the new fraction: $\\displaystyle\\frac{\\var{ab}}{\\var{cd}}$.
\nThis answer may need simplifying down, and to do this, find the greatest common divisor in both the numerator and denominator and divide by this number.
\nThe greatest common divisor of $\\var{ab}$ and $\\var{cd}$ is $\\var{gcd}$.
\nBy using $\\var{gcd}$ to cancel down the fraction, the final answer is $\\displaystyle\\simplify{{ab}/{cd}}$.
\n\nTo multiply $\\displaystyle\\simplify{{k_coprime}/{j_coprime}}\\times\\var{f}\\frac{\\var{g_coprime}}{\\var{h_coprime}}$, we first need to change the mixed number term into an improper fraction.
\nTo do this, we need to multiply $(\\var{f}\\times\\var{h_coprime}=\\var{fh})$ and add it to what was already on the numerator of the fraction, $\\var{g_coprime}$.
\n$\\displaystyle\\frac{(\\var{fh}+\\var{g_coprime})}{\\var{h_coprime}}= \\displaystyle\\frac{\\var{numif}}{\\var{h_coprime}}$.
\nNext, we multiply the numerators and denominators across both fractions separately, as done in part a).
\n$\\var{k_coprime}\\times\\var{numif} = \\var{num}$,
\n$\\var{j_coprime}\\times\\var{h_coprime}=\\var{denom}$.
\nThis gives the unsimplified version of the new fraction $\\displaystyle\\frac{\\var{num}}{\\var{denom}}$.
\nTo simplify, find the greatest common divisor in both the numerator and denominator and divide by this number.
\nThe greatest common divisor of $\\var{num}$ and $\\var{denom}$ is $\\var{gcdb}$.
\nBy using $\\var{gcdb}$ to cancel down the fraction, the final answer is $\\displaystyle\\simplify{{num}/{denom}}$.
\n\n\nTo square a fraction means to multiply the fraction by itself. To do this, multiply the numerators and denominators across individually.
\n$\\displaystyle\\bigg(\\frac{\\var{l_coprime}}{\\var{m_coprime}}\\bigg)^2=\\frac{\\var{l_coprime}}{\\var{m_coprime}}\\times\\frac{\\var{l_coprime}}{\\var{m_coprime}}=\\frac{\\var{l_coprime^2}}{\\var{m_coprime^2}}.$
\nFrom this, we should look if it is possible to simplify by finding the highest common divisor of $\\var{l_coprime^2}$ and $\\var{m_coprime^2}.$
\nThe greatest common divisor is $\\var{gcd_lcmc}$.
\nTherefore, it is not possible to simplify this further, and the final answer is
\nBy simplifying with this value, the final answer is
\n$\\displaystyle\\frac{\\var{l_coprime2}}{\\var{m_coprime2}}$.
\n\nHelen was on holiday for $28$ days and spent $\\displaystyle\\frac{\\var{aa}}{7}$ of her time in Spain.
\n$\\displaystyle\\frac{\\var{aa}}{7}\\times\\frac{28}{1}=\\frac{\\var{bb}}{7}=\\var{cc}$ days in Spain.
\nWhilst in Spain, she spends $\\displaystyle\\frac{\\var{dd}}{4}$ of her time in Barcelona.
\n$\\displaystyle\\frac{\\var{dd}}{4}\\times\\frac{\\var{cc}}{1}=\\frac{\\var{ddcc}}{4}=\\var{ee}$ days in Barcelona.
\n", "ungrouped_variables": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "functions": {}, "name": "Jo-Ann's copy of Fraction multiplication", "extensions": [], "rulesets": {}, "variables": {"c_coprime": {"name": "c_coprime", "group": "Part a", "description": "", "templateType": "anything", "definition": "c/gcd_ac"}, "gcd": {"name": "gcd", "group": "Part a", "description": "", "templateType": "anything", "definition": "gcd(ab,cd)"}, "m_coprime2": {"name": "m_coprime2", "group": "Part c", "description": "", "templateType": "anything", "definition": "m_coprime^2/gcd_lcmc"}, "g": {"name": "g", "group": "Part b", "description": "Random number between 1 and 20.
", "templateType": "randrange", "definition": "random(1..7#1)"}, "gcd_bd": {"name": "gcd_bd", "group": "Part a", "description": "", "templateType": "anything", "definition": "gcd(b,d)"}, "b_coprime": {"name": "b_coprime", "group": "Part a", "description": "", "templateType": "anything", "definition": "b/gcd_bd"}, "k_coprime": {"name": "k_coprime", "group": "Part b", "description": "", "templateType": "anything", "definition": "k/gcd_kj"}, "d_coprime": {"name": "d_coprime", "group": "Part a", "description": "", "templateType": "anything", "definition": "d/gcd_bd"}, "gcd_gh": {"name": "gcd_gh", "group": "Part b", "description": "", "templateType": "anything", "definition": "gcd(g,h)"}, "k": {"name": "k", "group": "Part b", "description": "Random number between 1 and 20
", "templateType": "anything", "definition": "random(1..7 except j)"}, "j": {"name": "j", "group": "Part b", "description": "Random number between 1 and 20
", "templateType": "anything", "definition": "Random(3,5,7,11,13,17)"}, "h": {"name": "h", "group": "Part b", "description": "Random number between 1 and 20.
", "templateType": "randrange", "definition": "random(7..10#1)"}, "j_coprime": {"name": "j_coprime", "group": "Part b", "description": "", "templateType": "anything", "definition": "j/gcd_kj"}, "a_coprime": {"name": "a_coprime", "group": "Part a", "description": "", "templateType": "anything", "definition": "a/gcd_ac"}, "d": {"name": "d", "group": "Part a", "description": "Random number from 1 to 12.
", "templateType": "randrange", "definition": "random(2..12#1)"}, "gcd_lm": {"name": "gcd_lm", "group": "Part c", "description": "", "templateType": "anything", "definition": "gcd(l,m)"}, "gcd_kj": {"name": "gcd_kj", "group": "Part b", "description": "", "templateType": "anything", "definition": "gcd(k,j)"}, "dd": {"name": "dd", "group": "Part d", "description": "", "templateType": "anything", "definition": "random(1..3)"}, "fh": {"name": "fh", "group": "Part b", "description": "Variable f times variable h
", "templateType": "anything", "definition": "f*h_coprime"}, "l_coprime2": {"name": "l_coprime2", "group": "Part c", "description": "", "templateType": "anything", "definition": "l_coprime^2/gcd_lcmc"}, "gcda": {"name": "gcda", "group": "Part b", "description": "gcd of the numerator of the improper fraction
", "templateType": "anything", "definition": "gcd({numif},{h_coprime})"}, "numif": {"name": "numif", "group": "Part b", "description": "Numerator of the improper fraction converted from a mixed number.
", "templateType": "anything", "definition": "(f*h_coprime)+g_coprime"}, "m": {"name": "m", "group": "Part c", "description": "", "templateType": "anything", "definition": "random(1..12 except l)"}, "ddcc": {"name": "ddcc", "group": "Part d", "description": "", "templateType": "anything", "definition": "dd*cc"}, "ab": {"name": "ab", "group": "Part a", "description": "Variable a times variable b
", "templateType": "anything", "definition": "a_coprime*b_coprime"}, "cc": {"name": "cc", "group": "Part d", "description": "", "templateType": "anything", "definition": "bb/7"}, "gcd_ac": {"name": "gcd_ac", "group": "Part a", "description": "PART A
", "templateType": "anything", "definition": "gcd(a,c)"}, "b": {"name": "b", "group": "Part a", "description": "Random number from 1 to 12.
", "templateType": "randrange", "definition": "random(2..12#1)"}, "g_coprime": {"name": "g_coprime", "group": "Part b", "description": "", "templateType": "anything", "definition": "g/gcd_gh"}, "aa": {"name": "aa", "group": "Part d", "description": "", "templateType": "anything", "definition": "random(1..6)"}, "m_coprime": {"name": "m_coprime", "group": "Part c", "description": "", "templateType": "anything", "definition": "m/gcd_lm"}, "num": {"name": "num", "group": "Part b", "description": "Numerator of gap 0
", "templateType": "anything", "definition": "k_coprime*{numif/gcda}"}, "ee": {"name": "ee", "group": "Part d", "description": "", "templateType": "anything", "definition": "ddcc/4"}, "h_coprime": {"name": "h_coprime", "group": "Part b", "description": "", "templateType": "anything", "definition": "h/gcd_gh"}, "l": {"name": "l", "group": "Part c", "description": "", "templateType": "anything", "definition": "random(1..12)"}, "a": {"name": "a", "group": "Part a", "description": "Random number from 1 to 12.
", "templateType": "anything", "definition": "random(2..12 except c)"}, "cd": {"name": "cd", "group": "Part a", "description": "Variable c times variable d.
", "templateType": "anything", "definition": "c_coprime*d_coprime"}, "l_coprime": {"name": "l_coprime", "group": "Part c", "description": "", "templateType": "anything", "definition": "l/gcd_lm"}, "c": {"name": "c", "group": "Part a", "description": "Random number from 1 to 12.
", "templateType": "anything", "definition": "random(3,5,7,11)"}, "gcdb": {"name": "gcdb", "group": "Part b", "description": "", "templateType": "anything", "definition": "gcd(num,denom)"}, "f": {"name": "f", "group": "Part b", "description": "Random number between 1 and 4 - integer part of the mixed number.
", "templateType": "randrange", "definition": "random(1..4#1)"}, "denom": {"name": "denom", "group": "Part b", "description": "Denominator of new fraction.
", "templateType": "anything", "definition": "j_coprime*(h_coprime/gcda)"}, "gcd2": {"name": "gcd2", "group": "Part b", "description": "", "templateType": "anything", "definition": "gcd(num,denom)"}, "gcd_lcmc": {"name": "gcd_lcmc", "group": "Part c", "description": "", "templateType": "anything", "definition": "gcd((l_coprime)^2,(m_coprime)^2)"}, "bb": {"name": "bb", "group": "Part d", "description": "", "templateType": "anything", "definition": "28*aa"}}, "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Jo-Ann Lyons", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2630/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Jo-Ann Lyons", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2630/"}]}