// Numbas version: exam_results_page_options {"name": "CLE 2 True False", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

See all the lectures and workshops from Week 0 to Week 2.

", "variablesTest": {"maxRuns": 100, "condition": ""}, "tags": [], "variables": {"c": {"definition": "random(6..9)", "templateType": "anything", "description": "", "group": "change these", "name": "c"}, "a": {"definition": "random(3..7)", "templateType": "anything", "description": "", "group": "change these", "name": "a"}, "statements_false": {"definition": "[\"To get from $\\\\var{a}^{\\\\var{b}}$ to $\\\\var{a}^{\\\\var{b+1}}$, you add $1$\",\n \"$\\\\log_2(8) = 3$ because that's what the calculator says\",\n \"Solving an equation means finding the answer\",\n \"According to the convention described in Lecture 1.4, positive angles correspond to clockwise rotation\",\n \"$-\\\\var{c}^2$ equals $\\\\var{c^2}$\",\n \"$\\\\sqrt{\\\\var{(c-1)^2}}$ equals $\\\\var{c-1}$ or $-\\\\var{c-1}$\",\n \"$a(b+c) \\\\neq ab+ac$\",\n \"$\\\\sin(b+c) = \\\\sin(b) + \\\\sin(c)$\",\n \"$\\\\sqrt{b+c} = \\\\sqrt{b} + \\\\sqrt{c}$\",\n \"$(b+c)^4 = b^4 + c^4$\",\n \"$\\\\frac{b+c}{a} \\\\neq \\\\frac{b}{a} + \\\\frac{c}{a}$\",\n \"$\\\\frac{a}{b+c} = \\\\frac{a}{b} + \\\\frac{a}{c}$\",\n \"$\\\\sin(\\\\theta)$ can be bigger than $1$\",\n \"$\\\\tan(\\\\theta)$ can never be bigger than $1$\",\n \"If $0<\\\\theta<45^{\\\\circ}$, then the opposite of the angle is larger than the adjacent.\"\n]\n ", "templateType": "anything", "description": "", "group": "change these", "name": "statements_false"}, "max_mark": {"definition": "10", "templateType": "anything", "description": "", "group": "change these", "name": "max_mark"}, "rand": {"definition": "vector(map(digits[n_true+19-j],j,0..(n-1)))", "templateType": "anything", "description": "", "group": "do not change these", "name": "rand"}, "statements_true": {"definition": "[\"To get from $\\\\var{a}^{\\\\var{b}}$ to $\\\\var{a}^{\\\\var{b+1}}$, you multiply by $\\\\var{a}$\",\n \"$\\\\log_2(8) = 3$ because $2^3=8$\",\n \"Solving an equation means finding all values of the unknown which makes the equation true\",\n \"According to the convention described in Lecture 1.4, positive angles correspond to anti-clockwise rotation\",\n \"$-\\\\var{c}^2$ equals $-\\\\var{c^2}$\",\n \"$\\\\sqrt{\\\\var{(c-1)^2}}$ equals $\\\\var{c-1}$, not $-\\\\var{c-1}$\",\n \"$a(b+c)=ab+ac$\",\n \"$\\\\sin(b+c) \\\\neq \\\\sin(b) + \\\\sin(c)$\",\n \"$\\\\sqrt{b+c} \\\\neq \\\\sqrt{b} + \\\\sqrt{c}$\",\n \"$(b+c)^4 \\\\neq b^4 + c^4$\",\n \"$\\\\frac{b+c}{a} = \\\\frac{b}{a} + \\\\frac{c}{a}$\",\n \"$\\\\frac{a}{b+c} \\\\neq \\\\frac{a}{b} + \\\\frac{a}{c}$\",\n \"$\\\\sin(\\\\theta)$ can never be bigger than $1$\",\n \"$\\\\tan(\\\\theta)$ can be bigger than $1$\",\n \"If $0<\\\\theta<45^{\\\\circ}$, then the opposite of the angle is shorter than the adjacent.\"\n]\n ", "templateType": "anything", "description": "", "group": "change these", "name": "statements_true"}, "b": {"definition": "random(10..18)+random(1..9)/10", "templateType": "anything", "description": "", "group": "change these", "name": "b"}, "marks": {"definition": "matrix(map(if(rand[j]=1,[max_mark/n,-max_mark],[-max_mark,max_mark/n]),j,0..n-1))\n", "templateType": "anything", "description": "", "group": "do not change these", "name": "marks"}, "statements": {"definition": "map(if(rand[j]=1,\n statements_true[j],\n statements_false[j]),j,0..n-1)", "templateType": "anything", "description": "", "group": "do not change these", "name": "statements"}, "n": {"definition": "15", "templateType": "anything", "description": "", "group": "change these", "name": "n"}, "n_true": {"definition": "random(1..n-1)", "templateType": "anything", "description": "", "group": "do not change these", "name": "n_true"}, "digits": {"definition": "map(0,j,0..19)+map(1,j,0..19)", "templateType": "anything", "description": "", "group": "do not change these", "name": "digits"}}, "parts": [{"warningType": "none", "prompt": "

Which of the following are true and which are false?

True

", "

False

"], "matrix": "{marks}", "shuffleAnswers": false, "extendBaseMarkingAlgorithm": true, "minMarks": 0, "layout": {"expression": "", "type": "all"}, "maxMarks": "0", "type": "m_n_x", "shuffleChoices": true}], "name": "CLE 2 True False", "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

15 questions based on module so far.

"}, "rulesets": {}, "variable_groups": [{"variables": ["statements_true", "statements_false", "max_mark", "n", "a", "b", "c"], "name": "change these"}, {"variables": ["n_true", "digits", "rand", "statements", "marks"], "name": "do not change these"}], "ungrouped_variables": [], "preamble": {"js": "", "css": ""}, "extensions": [], "statement": "

This is a non-calculator question.

", "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}