// Numbas version: finer_feedback_settings {"name": "Gaussian elimination to solve a 3x3 system of linear equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"js": "", "css": ""}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variable_groups": [], "advice": "
Look at the revealed answers for this question. All the information needed is there.
", "name": "Gaussian elimination to solve a 3x3 system of linear equations", "statement": "Solve the system of equations using Gauss Elimination
\\[\\begin{eqnarray*} &\\var{a}x&+\\;&\\var{a*b-1}y&+\\;\\var{a^2*b-a-a*b}z&=&\\var{c2}\\\\ &\\var{a*c}x&+\\;&\\var{c*b}y&+\\;z&=&\\var{c1}\\\\ &x&+\\;&\\var{b}y&+\\;\\var{b*a-b}z&=&\\var{c3} \\end{eqnarray*} \\]
Part a) Rearrange the order of the equations and represent this as a system of equations using a matrix.
Part b) Introduce zeros in the first column using the first row.
Part c) Introduce zeros in the second
Part d) Solve for $y$ and $x$ using the second and first rows of the reduced matrix.
To make sure that there is a 1 in the first row, first column position.
", "Because you always do this.
", "Why not.
", "I don't know.
"], "distractors": ["", "", "", ""], "extendBaseMarkingAlgorithm": true, "matrix": [1, 0, 0, 0], "unitTests": [], "minMarks": 0}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "1", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": true, "extendBaseMarkingAlgorithm": true, "maxValue": "1", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{b}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{b}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{b*a-b}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{b*a-b}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{c3}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{c3}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{a}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{a}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{a*b-1}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{a*b-1}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{a^2*b-a-a*b}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{a^2*b-a-a*b}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{c2}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{c2}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{a*c}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{a*c}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{b*c}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{b*c}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "1", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "1", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{c1}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": true, "extendBaseMarkingAlgorithm": true, "maxValue": "{c1}", "unitTests": []}], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "prompt": "\nRe-arrange the rows so that the third row becomes the first row, the first the second and the second the third.
WHY? Choose one of the following:
[[0]]
Now write down the entries of the matrix you will use for Gaussian Elimination, remember to include the constants as the last column.
\n\\[\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] | \n[[1]] | \n[[2]] | \n[[3]] | \n[[4]] | \n\\[\\left) \\begin{matrix} \\phantom{.} \\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] | \n
[[5]] | \n[[6]] | \n[[7]] | \n[[8]] | \n||
[[9]] | \n[[10]] | \n[[11]] | \n[[12]] | \n
Now introduce zeros in the first column below the first entry by adding:
[[0]] times the first row to the second row and
[[1]] times the first row to the third row to get the matrix:
\\[\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] | \n \n$\\var{1}$ | \n \n$\\var{b}$ | \n \n$\\var{b*a-b}$ | \n \n$\\var{c3}$ | \n \n\\[\\left) \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] | \n \n
$\\var{0}$ | \n \n[[2]] | \n \n[[3]] | \n \n[[4]] | \n \n||
$\\var{0}$ | \n \n[[5]] | \n \n[[6]] | \n \n[[7]] | \n \n
Next multiply the second row by [[8]] to get a 1 in the second entry in the second row.
\n \n \n ", "unitTests": [], "sortAnswers": false}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0, "scripts": {}, "type": "gapfill", "gaps": [{"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.8, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{-b*c+a*b*c}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{-b*c+a*b*c}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.8, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{a}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": true, "extendBaseMarkingAlgorithm": true, "maxValue": "{a}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.8, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{a*c3-c2}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": true, "extendBaseMarkingAlgorithm": true, "maxValue": "{a*c3-c2}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.8, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{1}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": true, "extendBaseMarkingAlgorithm": true, "maxValue": "{1}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0.8, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{b*c*(1-a)*(c2-a*c3)+c1-a*c*c3}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": true, "extendBaseMarkingAlgorithm": true, "maxValue": "{b*c*(1-a)*(c2-a*c3)+c1-a*c*c3}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 2, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{z}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": true, "extendBaseMarkingAlgorithm": true, "maxValue": "{z}", "unitTests": []}], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "prompt": "\n \n \nNote that you should have multiplied the second row by a suitable number to get a $1$ in the second entry in the second row.
In this part we introduce a $0$ in the second column below the second entry in the second column by adding:
[[0]] times the second row to the third row to get the matrix:
\\[\\left( \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] | \n \n$\\var{1}$ | \n \n$\\var{b}$ | \n \n$\\var{b*a-b}$ | \n \n$\\var{c3}$ | \n \n\\[\\left) \\begin{matrix} \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\phantom{.}\\\\ \\end{matrix} \\right.\\] | \n \n
$\\var{0}$ | \n \n$\\var{1}$ | \n \n[[1]] | \n \n[[2]] | \n \n||
$\\var{0}$ | \n \n$\\var{0}$ | \n \n[[3]] | \n \n[[4]] | \n \n
From this you should find:
\n \n \n \n$z=\\;\\;$[[5]]
\n \n \n ", "unitTests": [], "sortAnswers": false}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 0, "scripts": {}, "type": "gapfill", "gaps": [{"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 3, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{y}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{y}", "unitTests": []}, {"showFeedbackIcon": true, "customMarkingAlgorithm": "", "variableReplacements": [], "showCorrectAnswer": true, "marks": 2.6, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "minValue": "{x}", "mustBeReducedPC": 0, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "mustBeReduced": false, "allowFractions": false, "extendBaseMarkingAlgorithm": true, "maxValue": "{x}", "unitTests": []}], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "prompt": "\n \n \nFrom the second row of the reduced matrix you find an equation involving only $y$ and $z$ and using your value for $z$ we find:
\n \n \n \n$y=\\;\\;$[[0]]
\n \n \n \nThen using the first row we have the equation :
\\[\\simplify[all]{x+ {b}y+{b*a-b}z={c3}}\\]
Using this you can now find $x$:
\n \n \n \n$x=\\;\\;$[[1]]
\n \n \n ", "unitTests": [], "sortAnswers": false}], "metadata": {"description": "Solving a system of three linear equations in 3 unknowns using Gauss Elimination in 4 stages. Solutions are all integral.
", "licence": "Creative Commons Attribution 4.0 International"}, "extensions": [], "ungrouped_variables": ["a", "c", "b", "c3", "c2", "y", "x", "c1", "z"], "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}]}]}], "contributors": [{"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}]}