// Numbas version: exam_results_page_options {"name": "William's copy of Question 2.1 MATH 6005 Assessment 1 Matrix Multiplication 2 (3x3 by 3x2 matrices)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers"]}, "variable_groups": [], "variables": {"b31": {"definition": "random(-1..1)", "name": "b31", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "a21": {"definition": "random(-2..2)", "name": "a21", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ab11": {"definition": "a11*b11+a12*b21+a13*b31", "name": "ab11", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "b11": {"definition": "random(-3,-1,0,3)", "name": "b11", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "a13": {"definition": "random(0..2)", "name": "a13", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ba11": {"definition": "b11*a11+b12*a21", "name": "ba11", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ba13": {"definition": "b11*a13+b12*a23", "name": "ba13", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "c12": {"definition": "a12+b12", "name": "c12", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "b32": {"definition": "random(2..5)", "name": "b32", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ac11": {"definition": "a11*c11+a12*c21", "name": "ac11", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ab21": {"definition": "a21*b11+a22*b21+a23*b31", "name": "ab21", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "a12": {"definition": "random(1..4)", "name": "a12", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "b21": {"definition": "random(2,3)", "name": "b21", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "c22": {"definition": "random(0,1)", "name": "c22", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "b22": {"definition": "random(-3..-1)", "name": "b22", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "cb12": {"definition": "c11*b12+c12*b22", "name": "cb12", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "a23": {"definition": "random(-2..3)", "name": "a23", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ba23": {"definition": "b21*a13+b22*a23", "name": "ba23", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "a11": {"definition": "random(-2,1,2)", "name": "a11", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ba22": {"definition": "b21*a12+b22*a22", "name": "ba22", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ac22": {"definition": "a21*c12+a22*c22", "name": "ac22", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "c11": {"definition": "random(1,0,4)", "name": "c11", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ba12": {"definition": "b11*a12+b12*a22", "name": "ba12", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "cb22": {"definition": "c21*b12+c22*b22", "name": "cb22", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "c21": {"definition": "random(2..5)", "name": "c21", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ab22": {"definition": "a21*b12+a22*b22+a23*b32", "name": "ab22", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ac12": {"definition": "a11*c12+a12*c22", "name": "ac12", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ba32": {"definition": "b31*a12+b32*a22", "name": "ba32", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ba21": {"definition": "b21*a11+b22*a21", "name": "ba21", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ac21": {"definition": "a21*c11+a22*c21", "name": "ac21", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "cb21": {"definition": "c21*b11+c22*b21", "name": "cb21", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "cb11": {"definition": "c11*b11+c12*b21", "name": "cb11", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "b12": {"definition": "random(-3..1)", "name": "b12", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "a22": {"definition": "random(1..3)", "name": "a22", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ba31": {"definition": "b31*a11+b32*a21", "name": "ba31", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ab12": {"definition": "a11*b12+a12*b22+a13*b32", "name": "ab12", "description": "", "templateType": "anything", "group": "Ungrouped variables"}, "ba33": {"definition": "b31*a13+b32*a23", "name": "ba33", "description": "", "templateType": "anything", "group": "Ungrouped variables"}}, "ungrouped_variables": ["ba21", "a21", "a22", "ba22", "cb21", "b22", "b21", "cb22", "ac22", "ac21", "ab22", "ab21", "b12", "b11", "c12", "c11", "c22", "a11", "cb11", "cb12", "a12", "c21", "ba11", "ba12", "ab12", "ab11", "ac12", "ac11", "a13", "a23", "b31", "b32", "ba13", "ba23", "ba31", "ba32", "ba33"], "extensions": [], "preamble": {"js": "", "css": ""}, "name": "William's copy of Question 2.1 MATH 6005 Assessment 1 Matrix Multiplication 2 (3x3 by 3x2 matrices)", "advice": "

#### a)

\n

\$\\begin{eqnarray*} AB &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{b11}+{a12}{b21}}&\\simplify[]{{a11}{b12}+{a12}{b22}}\\\\ \\simplify[]{{a21}{b11}+{a22}{b21}}&\\simplify[]{{a21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ab11}&\\var{ab12}\\\\ \\var{ab21}&\\var{ab22}\\\\ \\end{pmatrix} \\end{eqnarray*} \$

\n

#### b)

\n

\$\\begin{eqnarray*} BA &=& \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{b11}{a11}+{b12}{a21}}&\\simplify[]{{b11}{a12}+{b12}{a22}}\\\\ \\simplify[]{{b21}{a11}+{b22}{a21}}&\\simplify[]{{b21}{a12}+{b22}{a22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ba11}&\\var{ba12}\\\\ \\var{ba21}&\\var{ba22}\\\\ \\end{pmatrix} \\end{eqnarray*} \$

\n

#### c)

\n

\$\\begin{eqnarray*} CB &=& \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{c11}{b11}+{c12}{b21}}&\\simplify[]{{c11}{b12}+{c12}{b22}}\\\\ \\simplify[]{{c21}{b11}+{c22}{b21}}&\\simplify[]{{c21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{cb11}&\\var{cb12}\\\\ \\var{cb21}&\\var{cb22}\\\\ \\end{pmatrix} \\end{eqnarray*} \$

\n

#### d)

\n

\$\\begin{eqnarray*} AC &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{c11}+{a12}{c21}}&\\simplify[]{{a11}{c12}+{a12}{c22}}\\\\ \\simplify[]{{a21}{c11}+{a22}{c21}}&\\simplify[]{{a21}{c12}+{a22}{c22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ac11}&\\var{ac12}\\\\ \\var{ac21}&\\var{ac22}\\\\ \\end{pmatrix} \\end{eqnarray*} \$

", "tags": [], "parts": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "showFeedbackIcon": true, "marks": 0, "type": "gapfill", "prompt": "

$AB = \\begin{pmatrix} \\var{a11}&\\var{a12}&\\var{a13}\\\\ \\var{a21}&\\var{a22}&\\var{a23}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\var{b31}&\\var{b32}\\end{pmatrix} =$ [[0]]

", "gaps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [ab11,ab12],\n [ab21,ab22]\n])", "allowResize": false, "showFeedbackIcon": true, "marks": "1", "variableReplacements": [], "markPerCell": false, "scripts": {}, "allowFractions": false, "numRows": "2", "tolerance": 0, "numColumns": "2", "type": "matrix", "correctAnswerFractions": false}]}, {"scripts": {}, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "showFeedbackIcon": true, "marks": 0, "type": "gapfill", "prompt": "

$BA = \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\var{b31}&\\var{b32}\\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}&\\var{a13}\\\\ \\var{a21}&\\var{a22}&\\var{a23}\\\\ \\end{pmatrix}=$ [[0]]

", "gaps": [{"variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [ba11,ba12,ba13],\n [ba21,ba22,ba23],\n [ba31,ba32,ba33]\n])", "allowResize": false, "showFeedbackIcon": true, "marks": "1", "variableReplacements": [], "markPerCell": false, "scripts": {}, "allowFractions": false, "numRows": "3", "tolerance": 0, "numColumns": "3", "type": "matrix", "correctAnswerFractions": false}]}], "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "

Do the following matrix problems :
Let
\$A=\\begin{pmatrix} \\var{a11}&\\var{a12}&\\var{a13}\\\\ \\var{a21}&\\var{a22}&\\var{a23}\\\\ \\end{pmatrix},\\;\\; B=\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\var{b31}&\\var{b32}\\end{pmatrix},\\;\\; \$
Calculate the following products of these matrices:

Multiplication of $2 \\times 2$ matrices.