// Numbas version: finer_feedback_settings {"name": "cormac's copy of CF Maths January test mock paper Partial Fractions 3 - double root", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "\n

 

\n

 

\n ", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": ""}, "parts": [{"marks": 0, "type": "gapfill", "prompt": "

Split \\[\\simplify{(({b1+b3})x^2+{b1*p+b1*q+b2+2*p*b3} * x + {b1*p*q + b2*q + b3*p^2})/ ((x + {p})^2 * (x + {q}))}\\] into partial fractions.

\n

Input the partial fractions here: [[0]].

\n

 

\n

 

", "unitTests": [], "showCorrectAnswer": true, "gaps": [{"checkingAccuracy": 1e-05, "marks": "5", "extendBaseMarkingAlgorithm": true, "checkingType": "absdiff", "checkVariableNames": false, "vsetRange": [10, 11], "type": "jme", "failureRate": 1, "vsetRangePoints": 5, "unitTests": [], "showCorrectAnswer": true, "showPreview": true, "scripts": {}, "showFeedbackIcon": true, "notallowed": {"partialCredit": 0, "strings": [")(", ")*("], "message": "

Input as the sum of partial fractions.

", "showStrings": false}, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "variableReplacements": [], "answer": "{b1} / (x + {p}) + {b2}/(x + {p})^2 + {b3} / (x + {q})", "expectedVariableNames": []}], "scripts": {}, "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "sortAnswers": false}], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variablesTest": {"condition": "b1+b3=0\n", "maxRuns": "100000"}, "tags": [], "advice": "

a)

\n

We use partial fractions to find $A$, $B$ and $C$ such that: 
$\\simplify{({a1+a3}x^2+{a1*a+a1*b+a2+2*a*a3} * x + {a1*a*b + a2*b + a3*a^2})/ ((x + {a})^2 * (x + {b}))} \\;\\;\\;=\\simplify{A/(x+{a})+B/(x+{a})^2+C/(x+{b})}$

\n

Dividing both sides of the equation by $\\displaystyle \\simplify[std]{1/( (x+{a})^2(x+{b}) )}\\;\\;$ we obtain:

\n

$ \\simplify{A(x+{a})(x+{b})+B(x+{b})+C(x+{a})^2 = {a1+a3}*x^2+{a1*a+a1*b+a2+2*a*a3}*x + {a1*a*b + a2*b + a3*a^2}}$

\n

$\\Rightarrow \\simplify[std]{(A+C)x^2+({a+b}A+B+{2a}C)x+({a*b}A+{b}B+{a*a}C)={a1+a3}*x^2+{a1*a+a1*b+a2+2*a*a3}*x + {a1*a*b + a2*b + a3*a^2}}$

\n

Identifying coefficients:

\n

Coefficient $x^2$: $\\simplify[std]{A+C={a1+a3} }$

\n

Coefficent $x$: $ \\simplify[std]{ {a+b}A+B+{2a}C = {a1*a+a1*b+a2+2*a*a3} }$ 

\n

Constant term: $\\simplify{{a*b}A+{b}B+{a*a}C ={a1*a*b + a2*b + a3*a^2}}$

\n

On solving these equations we obtain $A = \\var{a1}$, $B=\\var{a2}$ and $C=\\var{a3}$

\n

Which gives:$\\simplify{({a1+a3}x^2+{a1*a+a1*b+a2+2*a*a3} * x + {a1*a*b + a2*b + a3*a^2})/ ((x + {a})^2 * (x + {b}))} \\;\\;\\;=\\simplify{{a1}/(x+{a})+{a2}/(x+{a})^2+{a3}/(x+{b})}$

\n

\n

Apply same method to solve b) and c)

", "preamble": {"css": "", "js": ""}, "functions": {}, "extensions": [], "name": "cormac's copy of CF Maths January test mock paper Partial Fractions 3 - double root", "variable_groups": [], "variables": {"a2_": {"definition": "1", "name": "a2_", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "d_": {"definition": "1", "name": "d_", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "s1_": {"definition": "if(c_<0,-1,1)", "name": "s1_", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "q1": {"definition": "random(-5..5 except 0 except p1)", "name": "q1", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "b": {"definition": "random(-9..9 except 0 except a)", "name": "b", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "s1": {"definition": "if(c<0,-1,1)", "name": "s1", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "nb": {"definition": "if(c<0,'taking away','adding')", "name": "nb", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "p1": {"definition": "random(-5..5 except 0)", "name": "p1", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "a_": {"definition": "random(1..9)", "name": "a_", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "b2": {"definition": "random(-5..5 except 0)", "name": "b2", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "a1_": {"definition": "1", "name": "a1_", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "c1": {"definition": "random(-5..5 except 0)", "name": "c1", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "a1": {"definition": "random(1..9)", "name": "a1", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "c3": {"definition": "random(-5..5 except 0)", "name": "c3", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "q": {"definition": "random(-5..5 except 0 except p)", "name": "q", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "d": {"definition": "1", "name": "d", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "b3": {"definition": "random(-5..5 except 0)", "name": "b3", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "c": {"definition": "random(-9..9 except 0)", "name": "c", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "new": {"definition": "1", "name": "new", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "c_": {"definition": "random(-9..9 except 0)", "name": "c_", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "p": {"definition": "random(-5..5 except 0)", "name": "p", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "nb_": {"definition": "if(c_<0,'taking away','adding')", "name": "nb_", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "a2": {"definition": "random(1..9)", "name": "a2", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "a": {"definition": "random(1..9)", "name": "a", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "a3": {"definition": "random(1..9)", "name": "a3", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "c2": {"definition": "random(-5..5 except 0)", "name": "c2", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "b1": {"definition": "random(-5..5 except 0)", "name": "b1", "group": "Ungrouped variables", "templateType": "anything", "description": ""}, "b_": {"definition": "random(-9..9 except 0)", "name": "b_", "group": "Ungrouped variables", "templateType": "anything", "description": ""}}, "ungrouped_variables": ["a", "c", "b", "nb", "s1", "a_", "c_", "b_", "nb_", "a1_", "a2_", "s1_", "new", "a1", "a2", "a3", "d", "d_", "b1", "b2", "b3", "p", "q", "c1", "c2", "c3", "p1", "q1"], "type": "question", "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}, {"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}], "resources": []}]}], "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}, {"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}