// Numbas version: finer_feedback_settings {"name": "Parallel Axis Theorem: common shapes", "extensions": ["geogebra"], "custom_part_types": [], "resources": [["question-resources/MOI_table.pdf", "/srv/numbas/media/question-resources/MOI_table.pdf"], ["question-resources/MOI_table.png", "/srv/numbas/media/question-resources/MOI_table.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Parallel Axis Theorem: common shapes", "tags": ["Mechanics", "mechanics", "moment of inertia", "parallel axis theorem", "second moment of area", "Statics", "statics"], "metadata": {"description": "

Write expressions for the moment of inertia of simple shapes about various axes.

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

{geogebra_applet('j25dzmbq', [[\"A\",A],[\"shape\",index +1],[\"axis\",axis],[\"reference\",ref]])}

\n

Write an expression for the moment of inertia with respect to the {if(axis=1,\"centroidal \",\"\")}x axis for the {shape} with {description}.  

", "advice": "

Some cases are found in the table below.  For others use the parallel axis theorem.

\n

\\[I = \\bar{I} + A d^2\\]

\n

 where:

\n

$\\bar{I}$ is the centroidal moment of inertia, i.e., the moment of inertia of the shape with respect to an axis which is parallel to the desired axis and passes throught the shape's centroid.

\n

$A$ is the area of the shape.

\n

$d$ is the distance between the desired axis and the parallel centroidal axis.

\n

\n

\n

\n

\n

\n

", "rulesets": {}, "extensions": ["geogebra"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"distances": {"name": "distances", "group": "Ungrouped variables", "definition": "let(d,string(down),u,string(up),[[\"0\",\"0\",\"0\",\"0\"],\n [d,d,d,d],\n [u,u,u,u],\n [\"0\",\"c\",\"c+(\"+d+\")\",\"c-(\"+u+\")\"],\n [\"0\",\"c\",\"c-\"+d,\"c+\"+u]])", "description": "", "templateType": "anything", "can_override": false}, "names": {"name": "names", "group": "Ungrouped variables", "definition": "[\"rectangle\",\"triangle\",\"circle\",\"semicircle\",\"quarter circle\"]", "description": "", "templateType": "anything", "can_override": false}, "ref": {"name": "ref", "group": "Ungrouped variables", "definition": "if(axis>3,random(1..3),0)", "description": "

The reference axis, needed for axis 4 and 5.  

\n

1 centroid

\n

2 bottom of shape

\n

3 top of shape

", "templateType": "anything", "can_override": false}, "shape": {"name": "shape", "group": "parts", "definition": "names[index]", "description": "", "templateType": "anything", "can_override": false}, "index": {"name": "index", "group": "Ungrouped variables", "definition": "random(0..4)", "description": "

rectangle, triangle, circle, semicircle, quarter circle

", "templateType": "anything", "can_override": false}, "area": {"name": "area", "group": "parts", "definition": "expression(areas[index])", "description": "", "templateType": "anything", "can_override": false}, "areas": {"name": "areas", "group": "Ungrouped variables", "definition": "[\"b*h\", \"b h / 2\", \"pi r^2\", \"pi r^2 /2\" , \"pi r^2 /4\"]", "description": "", "templateType": "anything", "can_override": false}, "maximums": {"name": "maximums", "group": "Ungrouped variables", "definition": "[\"h/2\",\n if(quadrant<2,\"2 h/3\",\"h/3\")\n ,\"r\",\n if(quadrant=0,\"(r-(4 r)/(3 pi))\",if(quadrant=2,\"(4 r)/(3 pi)\",\"r\")),\n if(quadrant<=1,\"(r-(4 r)/(3 pi))\", \"(4 r)/(3 pi)\")]", "description": "

Distance from centroid to the top of the shape.

\n

\n

maximums = {abs(y(A) / 2), Max(2 / 3 y(A), (-y(A)) / 3), radius, If(quadrant \u225f 0, radius - ybar, quadrant \u225f 1, radius, quadrant \u225f 2, ybar, quadrant \u225f 3, radius), If(quadrant ≤ 1, radius - ybar, ybar)}

", "templateType": "anything", "can_override": false}, "quadrant": {"name": "quadrant", "group": "parts", "definition": "if(A[0]>0 and A[1]>0,0,\n if(A[0]<0 and A[1] > 0, 1,\n if(A[0]<0 and A[1]<0,2,3)))", "description": "

Calculates which quadrant point A is in.  Needed to determine orientation of the triangle, semi and quarter circles.

", "templateType": "anything", "can_override": false}, "even_quadrant": {"name": "even_quadrant", "group": "Ungrouped variables", "definition": "mod(quadrant,2)=0 ", "description": "

usefull utility

", "templateType": "anything", "can_override": false}, "Ibars": {"name": "Ibars", "group": "Ungrouped variables", "definition": "[\"b*h^3/12\",\n \"b*h^3/36\", \n \"pi r^4/4\", \n if(even_quadrant,\"0.1098 r^4\",\"pi r^4/8\"),\n \"0.0549 r^4\"]", "description": "", "templateType": "anything", "can_override": false}, "minimums": {"name": "minimums", "group": "Ungrouped variables", "definition": "[\"h/2\",\n if(quadrant<2,\"h/3\",\"2 h/3\")\n ,\"r\",\n if(quadrant=0,\"(4 r)/(3 pi)\",if(quadrant=2,\"r-(4 r)/(3 pi)\",\"r\")),\n if(quadrant<=1,\"(4 r)/(3 pi)\", \"r-(4 r)/(3 pi)\")]", "description": "

distance from centroid to bottom of the shape

", "templateType": "anything", "can_override": false}, "Ibar": {"name": "Ibar", "group": "parts", "definition": "expression(Ibars[index])", "description": "", "templateType": "anything", "can_override": false}, "axis": {"name": "axis", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "

1 through centroid

\n

2 bottom of shape

\n

3 top of shape

\n

4 below shape

\n

5 above shape

", "templateType": "anything", "can_override": false}, "down": {"name": "down", "group": "parts", "definition": "expression(minimums[index])", "description": "

distance from centroid to bottom of shape

", "templateType": "anything", "can_override": false}, "up": {"name": "up", "group": "parts", "definition": "expression(maximums[index])", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "parts", "definition": "expression(distances[axis-1][ref])", "description": "", "templateType": "anything", "can_override": false}, "description": {"name": "description", "group": "parts", "definition": "if(index<2,\"base b and height h\", \"radius r\")", "description": "", "templateType": "anything", "can_override": false}, "Ix": {"name": "Ix", "group": "parts", "definition": "(string(Ibar) + \"+ \" + string(area) + \"*(\"+ string(d) + \")^2\")", "description": "", "templateType": "anything", "can_override": false}, "A": {"name": "A", "group": "Ungrouped variables", "definition": "vector(random([2,3],[3,2],[-3,2],[-2,3])) random(-1,1)\n", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["A", "index", "axis", "ref", "names", "areas", "Ibars", "maximums", "even_quadrant", "minimums", "distances"], "variable_groups": [{"name": "parts", "variables": ["shape", "area", "description", "Ibar", "up", "quadrant", "down", "d", "Ix"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\var{if(axis=1,latex(\"\\\\bar\\{I\\}_x\"), latex(\"I_x\"))}= $ [[0]]

\n

Note: If your answer produces an error message, try putting an asterisk before parentheses, like so: b h * (h/2)^2 

\n

\n

\\[I_x=\\simplify{{expression(Ix)}}\\]

\n

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "MOI", "marks": "10", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{expression(Ix)}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": true, "singleLetterVariables": true, "allowUnknownFunctions": false, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}]}], "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}