// Numbas version: exam_results_page_options {"name": "Factorising Quadratic Equations with $x^2$ Coefficients Less than 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Factorise a quadratic equation where the coefficient of the $x^2$ term is greater than 1 and then write down the roots of the equation

"}, "functions": {}, "variables": {"b1": {"group": "last q", "name": "b1", "definition": "random(1..3 except -a1)", "templateType": "anything", "description": ""}, "d1": {"group": "last q", "name": "d1", "definition": "random(-7..8#c1 except 0)", "templateType": "anything", "description": ""}, "a1": {"group": "last q", "name": "a1", "definition": "random(-3..-1)", "templateType": "anything", "description": ""}, "c1": {"group": "last q", "name": "c1", "definition": "random(2..5)", "templateType": "anything", "description": ""}}, "name": "Factorising Quadratic Equations with $x^2$ Coefficients Less than 1", "ungrouped_variables": [], "variablesTest": {"maxRuns": "150", "condition": "coprime(a1,b1) and coprime(c1,d1) and (a1*d1 <> -b1*c1)"}, "advice": "

#### As this question involves a number greater than $1$ before the $x^2$ value it has a factorised form $(ax+b)(cx+d)$.

\n

To find $a$ and $c$, we need to consider the factors of $\\var{a*c}$.

\n

We are already given that one of them is $\\var{a}$, so we know that the other one must be $\\var{c}$.

\n

This means our factorised equation must take the form

\n

\$(\\var{a}x+b)(\\var{c}x+d)=0\\text{.}\$

\n

This expands to

\n

\$\\simplify{ {a*c}x^2 + ({a}*d+{c}*b)x + a*b} \$

\n

So we must find two numbers which add together to make $\\var{a*d+b*c}$, and multiply together to make $\\var{b*d}$.

\n

Therefore $b$ and $d$ must satisfy

\n

\\begin{align}
b \\times d &=\\var{b*d}\\\\
\\simplify{{a}d+{c}b} &= \\var{a*d+b*c}\\text{.}
\\end{align}

\n

$b = \\var{b}$ and $d = \\var{d}$ satisfy these equations:

\n

\\begin{align}
\\var{b} \\times \\var{d} &=\\var{b*d}\\\\
\\simplify[]{ {a}*{d} + {b}*{c} } &= \\var{a*d+b*c}
\\end{align}

\n

So the factorised form of the equation is

\n

\$\\simplify{({a}x+{b})({c}x+{d}) = 0} \\text{.}\$

", "variable_groups": [{"variables": ["a1", "b1", "c1", "d1"], "name": "last q"}], "extensions": [], "tags": [], "parts": [{"vsetRangePoints": 5, "unitTests": [], "showCorrectAnswer": true, "variableReplacements": [], "showFeedbackIcon": true, "type": "jme", "failureRate": 1, "showPreview": true, "scripts": {"mark": {"script": "question.is_factorised_extended(this);", "order": "after"}}, "extendBaseMarkingAlgorithm": true, "answer": "({a1}x+{b1})({c1}x+{d1})", "prompt": "

Factorise the expression:

\n

$\\simplify{ {d1*b1} + {a1*d1 + b1*c1}x + {a1*c1}x^2 }$

", "customMarkingAlgorithm": "", "marks": 1, "expectedVariableNames": [], "checkVariableNames": false, "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "checkingType": "absdiff", "vsetRange": [0, 1]}], "statement": "", "rulesets": {}, "preamble": {"js": "question.is_factorised_extended = function(part,penalty) {\n penalty = penalty || 0;\n if(part.credit>0) {\n // Parse the student's answer as a syntax tree\n var studentTree = Numbas.jme.compile(part.studentAnswer,Numbas.jme.builtinScope);\n\n // Create the pattern to match against \n // we just want two sets of brackets, each containing two terms\n // or one of the brackets might not have a constant term\n // or for repeated roots, you might write (x+a)^2\n // with a not equal to zero or the negative version\n var rule = Numbas.jme.compile('m_all(m_any(x,m_pm(m_pm(m_pm(m_number)x)+m_pm(m_number)),x^m_number,(m_pm(m_number)x+m_pm(m_number))^m_number))*m_nothing');\n\n // Check the student's answer matches the pattern. \n var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n // If not, take away marks\n if(!m) {\n part.multCredit(penalty,'Your answer is not fully factorised.');\n }\n }\n}", "css": ""}, "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Ed Southwood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2415/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Ed Southwood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2415/"}]}