// Numbas version: exam_results_page_options {"name": "cormac's copy of Ida's copy of Rearranging Logarithms involving Indices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "cormac's copy of Ida's copy of Rearranging Logarithms involving Indices", "tags": [], "advice": "

#### a)

\n

i)

\n

We need to use the rule

\n

\$k\\log_a(x)=\\log_a(x^k)\\text{.}\$

\n

Subsituting in our values for $x$ and $k$ gives

\n

\$\\var{x1[3]}\\log_a(\\var{z1[0]})=\\log_a(\\var{z1[0]^x1[3]})\\text{.}\$

\n

ii)

\n

We need to use the rule

\n

\$k\\log_a(x)=\\log_a(x^k)\\text{.}\$

\n

Subsituting in our values for $x$ and $k$ gives

\n

\$\\var{x1[1]}\\log_a(\\var{z1[1]})=\\log_a(\\var{z1[1]^x1[1]})\\text{.}\$

\n

#### b)

\n

i)

\n

The rule for indices in logarithms also works the other way around,

\n

\$\\log_a(x^k)=k\\log_a(x)\\text{.}\$

\n

We can use this to rearrange our expression by substituting in values for $x$ and $k$.

\n

\\\begin{align} \\log_a(\\var{x1[3]^z1[5]})&=k\\log_a(\\var{x1[3]})\\\\ \\var{x1[3]^z1[5]}&=\\var{x1[3]}^k\\\\ \\var{x1[3]^z1[5]}&=\\var{x1[3]}^\\var{z1[5]}\\\\ k&=\\var{z1[5]}\\\\ \\log_a(\\var{x1[3]^z1[5]})&=\\var{z1[5]}\\log_a(\\var{x1[3]}) \\end{align}\

\n

ii)

\n

As with i) we can use the rule

\n

\$\\log_a(x^k)=k\\log_a(x)\\text{.}\$

\n

We can use this to rearrange our expression by substituting in values for $x$ and $k$.

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[6]})&=k\\log_a(\\var{x1[5]})\\\\ \\var{x1[5]^z1[6]}&=\\var{x1[5]}^k\\\\ \\var{x1[5]^z1[6]}&=\\var{x1[5]}^\\var{z1[6]}\\\\ k&=\\var{z1[6]}\\\\ \\log_a(\\var{x1[5]^z1[6]})&=\\var{z1[6]}\\log_a(\\var{x1[5]}) \\end{align}\

\n

#### c)

\n

i)

\n

From the structure of this question we can tell that the answer can be written in the form $k\\log_a(\\var{x1[3]})$, meaning all of the values in the expression

\n

\$\\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})\$

\n

can be written in the form $k\\log_a(\\var{x1[3]})$.

\n

If we look at each log individually we can make sure they all take this form.

\n

\\\begin{align} \\log_a(\\var{x1[3]^z1[2]})&=k\\log_a(\\var{x1[3]})\\\\ \\var{x1[3]^z1[2]}&=\\var{x1[3]}^k\\\\ \\var{x1[3]^z1[2]}&=\\var{x1[3]}^\\var{z1[2]}\\\\ k&=\\var{z1[2]}\\\\ \\log_a(\\var{x1[3]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[3]}) \\end{align}\

\n

We can now write our expression as

\n

\\\begin{align} \\log_a(\\var{x1[3]^z1[2]})+\\log_a(\\var{x1[3]})&=\\var{z1[2]}\\log_a(\\var{x1[3]})+\\log_a(\\var{x1[3]})\\\\ &=\\var{z1[2]+1}\\log_a(\\var{x1[3]})\\text{.} \\end{align}\

\n

ii)

\n

From this question we know our answer is written in the form $k\\log_a(\\var{x1[4]})$, meaning all of the values in the expression

\n

\$\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})\$

\n

can be written in the form $k\\log_a(\\var{x1[4]})$.

\n

If we look at each log individually we can make sure they all take this form.

\n

\\\begin{align} \\log_a(\\var{x1[4]^z1[1]})&=k\\log_a(\\var{x1[4]})\\\\ \\var{x1[4]^z1[1]}&=\\var{x1[4]}^k\\\\ \\var{x1[4]^z1[1]}&=\\var{x1[4]}^\\var{z1[1]}\\\\ k&=\\var{z1[1]}\\\\ \\log_a(\\var{x1[4]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[4]}) \\end{align}\

\n

\\\begin{align} \\log_a(\\var{x1[4]^z1[0]})&=k\\log_a(\\var{x1[4]})\\\\ \\var{x1[4]^z1[0]}&=\\var{x1[4]}^k\\\\ \\var{x1[4]^z1[0]}&=\\var{x1[4]}^\\var{z1[0]}\\\\ k&=\\var{z1[0]}\\\\ \\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[0]}\\log_a(\\var{x1[4]}) \\end{align}\

\n

We can now write our expression as

\n

\\\begin{align} \\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})&=\\var{z1[1]}\\log_a(\\var{x1[4]})+\\var{z1[0]}\\log_a(\\var{x1[4]})\\\\ &=\\var{z1[1]+z1[0]}\\log_a(\\var{x1[4]})\\text{.} \\end{align}\

\n

iii)

\n

From this question we know our answer is written in the form $k\\log_a(\\var{x1[5]})$, meaning all of the values in the expression

\n

\$\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})\$

\n

can be written in the form $k\\log_a(\\var{x1[5]})$.

\n

If we look at each log individually we can make sure they all take this form.

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[1]})&=k\\log_a(\\var{x1[5]})\\\\ \\var{x1[5]^z1[1]}&=\\var{x1[5]}^k\\\\ \\var{x1[5]^z1[1]}&=\\var{x1[5]}^\\var{z1[1]}\\\\ k&=\\var{z1[1]}\\\\ \\log_a(\\var{x1[5]^z1[1]})&=\\var{z1[1]}\\log_a(\\var{x1[5]}) \\end{align}\

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[2]})&=k\\log_a(\\var{x1[5]})\\\\ \\var{x1[5]^z1[2]}&=\\var{x1[5]}^k\\\\ \\var{x1[5]^z1[2]}&=\\var{x1[5]}^\\var{z1[2]}\\\\ k&=\\var{z1[2]}\\\\ \\log_a(\\var{x1[5]^z1[2]})&=\\var{z1[2]}\\log_a(\\var{x1[5]}) \\end{align}\

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[4]})&=k\\log_a(\\var{x1[5]})\\\\ \\var{x1[5]^z1[4]}&=\\var{x1[5]}^k\\\\ \\var{x1[5]^z1[4]}&=\\var{x1[5]}^\\var{z1[4]}\\\\ k&=\\var{z1[4]}\\\\ \\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[4]}\\log_a(\\var{x1[5]}) \\end{align}\

\n

We can now write our expression as

\n

\\\begin{align} \\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})&=\\var{z1[1]}\\log_a(\\var{x1[5]})+\\var{z1[0]}\\log_a(\\var{x1[5]})-\\var{z1[4]}\\log_a(\\var{x1[5]})\\\\ &=\\var{z1[1]+z1[2]-z1[4]}\\log_a(\\var{x1[5]})\\text{.} \\end{align}\

", "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "

Using the rules of logarithims, simplfy the following expressions

", "functions": {}, "rulesets": {}, "ungrouped_variables": ["x1", "y1", "z1", "b1", "c", "b4", "b", "b2"], "variables": {"b4": {"name": "b4", "templateType": "anything", "description": "", "definition": "random(2..4 except b1)", "group": "Ungrouped variables"}, "b1": {"name": "b1", "templateType": "anything", "description": "", "definition": "random(2..8 #2)", "group": "Ungrouped variables"}, "c": {"name": "c", "templateType": "anything", "description": "", "definition": "b1^b4", "group": "Ungrouped variables"}, "v": {"name": "v", "templateType": "anything", "description": "", "definition": "random(2..10)", "group": "part c"}, "z1": {"name": "z1", "templateType": "anything", "description": "", "definition": "repeat(random(2..4),10)", "group": "Ungrouped variables"}, "y1": {"name": "y1", "templateType": "anything", "description": "", "definition": "random(2..6)", "group": "Ungrouped variables"}, "p": {"name": "p", "templateType": "anything", "description": "", "definition": "random(3..6)", "group": "part c"}, "q": {"name": "q", "templateType": "anything", "description": "", "definition": "v^p", "group": "part c"}, "x1": {"name": "x1", "templateType": "anything", "description": "", "definition": "repeat(random(2..5),8)", "group": "Ungrouped variables"}, "m": {"name": "m", "templateType": "anything", "description": "", "definition": "random(2..20)", "group": "part c"}, "b": {"name": "b", "templateType": "anything", "description": "", "definition": "c/2", "group": "Ungrouped variables"}, "b2": {"name": "b2", "templateType": "anything", "description": "", "definition": "b-2", "group": "Ungrouped variables"}}, "variable_groups": [{"name": "part c", "variables": ["p", "v", "q", "m"]}], "extensions": [], "preamble": {"js": "", "css": ""}, "metadata": {"description": "

Use the rule $\\log_a(n^b) = b\\log_a(n)$ to rearrange some expressions.

", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"showCorrectAnswer": true, "scripts": {}, "marks": 0, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "prompt": "

\n

i)

\n

$\\log_a(\\var{x1[4]^z1[1]})+\\log_a(\\var{x1[4]^z1[0]})=$ [[0]]$\\log_a(\\var{x1[4]})$

\n

ii)

\n

$\\log_a(\\var{x1[5]^z1[1]})+\\log_a(\\var{x1[5]^z1[2]})-\\log_a(\\var{x1[5]^z1[4]})=$ [[1]]$\\log_a(\\var{x1[5]})$

", "sortAnswers": false, "variableReplacements": [], "gaps": [{"expectedVariableNames": [], "showCorrectAnswer": true, "checkVariableNames": false, "failureRate": 1, "scripts": {}, "marks": "2.5", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "variableReplacements": [], "checkingType": "absdiff", "answer": "{z1[1]+z1[0]}", "unitTests": [], "type": "jme", "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "showPreview": true}, {"expectedVariableNames": [], "showCorrectAnswer": true, "checkVariableNames": false, "failureRate": 1, "scripts": {}, "marks": "2.5", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "variableReplacements": [], "checkingType": "absdiff", "answer": "{z1[1]+z1[2]-z1[4]}", "unitTests": [], "type": "jme", "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "showPreview": true}], "unitTests": [], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst"}], "type": "question", "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}, {"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}]}], "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}, {"name": "Ida Landg\u00e4rds", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2336/"}]}