// Numbas version: exam_results_page_options {"name": "Divisibility: 10", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"tener": {"name": "tener", "definition": "random(300..2000#10)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "thismany": {"name": "thismany", "definition": "num/10", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "num": {"name": "num", "definition": "if(seed=0, tener+random(1..9),tener)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "seed": {"name": "seed", "definition": "random(0,1)", "templateType": "anything", "group": "Ungrouped variables", "description": ""}}, "preamble": {"css": "", "js": ""}, "functions": {}, "advice": "", "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["seed", "tener", "num", "thismany"], "variable_groups": [], "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Is this number divisible by 10? Half the time the number is, half the time it isn't. Steps give the divisibility test and a way to determine the number of tens.

"}, "name": "Divisibility: 10", "tags": [], "rulesets": {}, "parts": [{"maxMarks": 0, "shuffleChoices": false, "showFeedbackIcon": true, "unitTests": [], "minMarks": 0, "type": "1_n_2", "matrix": ["seed", "1-seed"], "stepsPenalty": "1", "showCorrectAnswer": true, "variableReplacements": [], "prompt": "

Is $\\var{num}$ divisible by $10$?

", "distractors": ["", ""], "extendBaseMarkingAlgorithm": true, "steps": [{"prompt": "

A number is divisible by $10$ if and only if it ends in the digit $0$.

\n

Since $\\var{num}$ ends with the digit $\\var{mod(num,10)}$ it is NOT divisible by $10$.

\n

Since $\\var{num}$ ends with the digit $\\var{mod(num,10)}$ it is divisible by $10$.

\n

To work out how many tens are in this number, you can cross off the end zero digit.

\n

For instance, with $\\var{num}$ cross off the zero and we can conclude that there are $\\var{thismany}$ tens in $\\var{num}$. In other words, $\\frac{\\var{num}}{10}=\\var{thismany}$.

\n

\n

", "extendBaseMarkingAlgorithm": true, "customMarkingAlgorithm": "", "showCorrectAnswer": true, "unitTests": [], "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "marks": 0, "scripts": {}, "type": "information"}], "variableReplacementStrategy": "originalfirst", "scripts": {}, "customMarkingAlgorithm": "", "showCellAnswerState": true, "choices": ["Yes", "No"], "displayType": "radiogroup", "marks": 0, "displayColumns": 0}], "extensions": [], "statement": "

If you are unsure of how to do a question, click on Show steps to see the full working. Then, once you understand how to do the question, click on Try another question like this one to start again.

", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}