// Numbas version: finer_feedback_settings {"name": "Frame: A-frame Difficulty 4", "extensions": ["geogebra", "stats", "quantities"], "custom_part_types": [{"source": {"pk": 19, "author": {"name": "William Haynes", "pk": 2530}, "edit_page": "/part_type/19/edit"}, "name": "Engineering Accuracy with units", "short_name": "engineering-answer", "description": "
A value with units marked right if within an adjustable % error of the correct value. Marked close if within a wider margin of error.
", "help_url": "", "input_widget": "string", "input_options": {"correctAnswer": "siground(settings['correctAnswer'],4)", "hint": {"static": true, "value": ""}, "allowEmpty": {"static": true, "value": true}}, "can_be_gap": true, "can_be_step": true, "marking_script": "mark:\nswitch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n\n\ninterpreted_answer:\nqty(student_scalar, student_units)\n\n\n\ncorrect_quantity:\nsettings[\"correctAnswer\"]\n\n\n\ncorrect_units:\nunits(correct_quantity)\n\n\nallowed_notation_styles:\n[\"plain\",\"en\"]\n\nmatch_student_number:\nmatchnumber(studentAnswer,allowed_notation_styles)\n\nstudent_scalar:\nmatch_student_number[1]\n\nstudent_units:\nreplace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")\n\ngood_units:\ntry(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n\n\nstudent_quantity:\nswitch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n\n\npercent_error:\ntry(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n \n\nright:\npercent_error <= settings['right']\n\n\nclose:\nright_sign and percent_error <= settings['close']\n\nright_sign:\nsign(student_scalar) = sign(correct_quantity)", "marking_notes": [{"name": "mark", "description": "This is the main marking note. It should award credit and provide feedback based on the student's answer.", "definition": "switch( \n right and good_units and right_sign, add_credit(1.0,'Correct.'),\n right and good_units and not right_sign, add_credit(settings['C2'],'Wrong sign.'),\n right and right_sign and not good_units, add_credit(settings['C2'],'Correct value, but wrong or missing units.'),\n close and good_units, add_credit(settings['C1'],'Close.'),\n close and not good_units, add_credit(settings['C3'],'Answer is close, but wrong or missing units.'),\n incorrect('Wrong answer.')\n)\n"}, {"name": "interpreted_answer", "description": "A value representing the student's answer to this part.", "definition": "qty(student_scalar, student_units)\n\n"}, {"name": "correct_quantity", "description": "", "definition": "settings[\"correctAnswer\"]\n\n"}, {"name": "correct_units", "description": "", "definition": "units(correct_quantity)\n"}, {"name": "allowed_notation_styles", "description": "", "definition": "[\"plain\",\"en\"]"}, {"name": "match_student_number", "description": "", "definition": "matchnumber(studentAnswer,allowed_notation_styles)"}, {"name": "student_scalar", "description": "", "definition": "match_student_number[1]"}, {"name": "student_units", "description": "Modify the unit portion of the student's answer by
\n1. replacing \"ohms\" with \"ohm\" case insensitive
\n2. replacing '-' with ' '
\n3. replacing '°' with ' deg'
\nto allow answers like 10 ft-lb and 30°
", "definition": "replace_regex('ohms','ohm',\n replace_regex('\u00b0', ' deg',\n replace_regex('-', ' ' ,\n studentAnswer[len(match_student_number[0])..len(studentAnswer)])),\"i\")"}, {"name": "good_units", "description": "", "definition": "try(\ncompatible(quantity(1, student_units),correct_units),\nmsg,\nfeedback(msg);false)\n"}, {"name": "student_quantity", "description": "This fixes the student answer for two common errors.
\nIf student_units are wrong - replace with correct units
\nIf student_scalar has the wrong sign - replace with right sign
\nIf student makes both errors, only one gets fixed.
", "definition": "switch(not good_units, \n student_scalar * correct_units, \n not right_sign,\n -quantity(student_scalar, student_units),\n quantity(student_scalar,student_units)\n)\n \n"}, {"name": "percent_error", "description": "", "definition": "try(\nscalar(abs((correct_quantity - student_quantity)/correct_quantity))*100 \n,msg,\nif(student_quantity=correct_quantity,0,100))\n "}, {"name": "right", "description": "", "definition": "percent_error <= settings['right']\n"}, {"name": "close", "description": "Only marked close if the student actually has the right sign.
", "definition": "right_sign and percent_error <= settings['close']"}, {"name": "right_sign", "description": "", "definition": "sign(student_scalar) = sign(correct_quantity) "}], "settings": [{"name": "correctAnswer", "label": "Correct Quantity.", "help_url": "", "hint": "The correct answer given as a JME quantity.", "input_type": "code", "default_value": "", "evaluate": true}, {"name": "right", "label": "% Accuracy for right.", "help_url": "", "hint": "Question will be considered correct if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "0.2", "evaluate": true}, {"name": "close", "label": "% Accuracy for close.", "help_url": "", "hint": "Question will be considered close if the scalar part of the student's answer is within this % of correct value.", "input_type": "code", "default_value": "1.0", "evaluate": true}, {"name": "C1", "label": "Close with units.", "help_url": "", "hint": "Partial Credit for close value with appropriate units. if correct answer is 100 N and close is ±1%,An A-frame structure supporting a force and a moment. The feet are at the different vertical positions so the solution will require simultaneous equations, unless you rotate the coordinate system.
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "{geogebra_applet('qe7xhnse',[[\"B\",B],[\"C\",C],['units','\"'+units[1]+'\"']]+ggb_load )}
\nThe A-frame shown supports a {display(abs(F_d))} force $D$ at the midpoint of member AB and a {display(abs(M_E)) } {if(me>0,\"counter-\",\"\")}clockwise moment $M_E$ at E as shown.
\nDetermine the scalar components of the reactions at pins A and C.
\nNote: the sign of a scalar component indicates the sense of the force. A positive sense indicates the force points towards the positive end of the corresponding axis.
", "advice": "Strategy:
Draw a free body diagram of the entire frame and each of its legs. Note that members AB or BC are not two-force bodies; therefore the direction of the forces at A and C don't align with the members and should be represented with x and y components. Since all of the free body diagrams have four unknowns, there is no simple way to find one unknown using just one equation. The general approach in this case is to write two equations which contain the same two unknowns, then solve them simultaneously.
\n{geogebra_applet('p6rz9bqx',[[\"B\",B],[\"C\",C]] + ggb_load )}
\nKnown:
\n$M_E = \\var{display(abs(M_E))}$ and $D = \\var{display(abs(F_D))}$
\nDetermine necessary angles:
\n$\\begin{align}\\alpha &= \\tan^{-1}\\left(\\frac{\\var{y1}}{\\var{x1}}\\right) = \\var{siground(alpha,4)}° & \\beta &= \\tan^{-1}\\left(\\frac{\\var{y2}}{\\var{x2}}\\right) = \\var{siground(beta,4)}°\\end{align}$
\nUse FBDs II and III to generate two independent equations containing $B_x$ and $B_y$:
\n$\\begin{align} \\textrm{II: } \\Sigma M_A &= 0 & \\textrm{III: } \\Sigma M_C &= 0\\\\B_x (\\var{y1}) + B_y (\\var{x1}) &= \\simplify{{sign(fd)} D ({y1/2})}& - B_x (\\var{y2}) + B_y (\\var{x2}) &= \\simplify{ - {sign(me)} M_E } \\\\ \\var{scalar(y1)} B_x + \\var{scalar(x1)}B_y& = \\var{fd scalar( y1/2) }\\qquad (1) & - \\var{scalar(y2)} B_x + \\var{Scalar(x2)} B_y &= \\var{scalar(-M_E ) }\\qquad (2)\\end{align}$
\nSolve equations (1) and (2) simultaneously to find $B_x$ and $B_y$:
\n$\\qquad B_x = \\var{display(Bx)} \\qquad\\qquad\\qquad\\qquad\\qquad B_y = \\var{display(By)}$
\nFrom FBD III:
\n$\\begin{align} \\textrm{III: }\\Sigma F_x &= 0 & \\textrm{III: }\\Sigma F_y &= 0 \\\\ C_x &= B_x & C_y & = B_y \\\\ &= \\var{display(abs(Cx))} \\var{if(vecC[0]<0,latex('\\\\leftarrow'),latex('\\\\rightarrow'))}& &= \\var{display(abs(Cy))} \\var{if(vecC[1]<0,latex('\\\\downarrow'),latex('\\\\uparrow'))} \\end{align}$
\nFrom FBD II:
\n$\\begin{align} \\textrm{II: }\\Sigma F_x &= 0 & \\textrm{II: } \\Sigma F_y &= 0\\\\ A_x &= \\simplify{B_x - {sign(fd)} D } & A_y &= -B_y \\\\&= \\simplify[!collectNumbers]{({display(-qty(vecC[0],units[0]))}) + ({-F_D})}& &= - ( \\var{display(qty(vecC[1],units[0]))}) \\\\ &=\\var{display(abs(qty(vecA[0],units[0])))} \\var{if(vecA[0]<0,latex('\\\\leftarrow'),latex('\\\\rightarrow'))} & &= \\var{display(abs(qty(vecA[1],units[0])))} \\var{if(vecA[1]<0,latex('\\\\downarrow'),latex('\\\\uparrow'))}\\end{align}$
\nalways 0 in this problem
", "templateType": "anything", "can_override": false}, "Cy": {"name": "Cy", "group": "quantities", "definition": "By", "description": "( sign(fd)} D y1/2 + -sign(me) M_E ) /(x1+x2)
", "templateType": "anything", "can_override": false}, "fd": {"name": "fd", "group": "Ungrouped variables", "definition": "random(-500..500#25 except 0)", "description": "the magnitude of the force
", "templateType": "anything", "can_override": false}, "me": {"name": "me", "group": "Ungrouped variables", "definition": "random(100..2000#100) random(1,-1)", "description": "the magnitude of the moment
", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "quantities", "definition": "qty(abs(b[0]-c[0]),units[1])", "description": "", "templateType": "anything", "can_override": false}, "F_w": {"name": "F_w", "group": "quantities", "definition": "qty(w,units[0])", "description": "", "templateType": "anything", "can_override": false}, "alpha": {"name": "alpha", "group": "quantities", "definition": "degrees(angle(vector(1,0),B))", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "quantities", "definition": "qty(B[0],units[1])", "description": "", "templateType": "anything", "can_override": false}, "F_d": {"name": "F_d", "group": "quantities", "definition": "qty(fd,units[0])", "description": "", "templateType": "anything", "can_override": false}, "Cx": {"name": "Cx", "group": "quantities", "definition": "Bx", "description": "( C_y x2 + -sign(me) M_E )/ y2
", "templateType": "anything", "can_override": false}, "det": {"name": "det", "group": "quantities", "definition": "det(matrix(\n [scalar(y1),scalar(x1)],\n [-scalar(y2),scalar(x2)]\n))", "description": "", "templateType": "anything", "can_override": false}, "dety": {"name": "dety", "group": "quantities", "definition": "det(matrix(\n [scalar(y1) ,fd scalar(y1) /2],\n [-scalar(y2) ,- me]\n))", "description": "", "templateType": "anything", "can_override": false}, "vecC": {"name": "vecC", "group": "vectors", "definition": "vector(scalar(-cx),scalar(cy))", "description": "reactions at C for both versions as a vector
", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "quantities", "definition": "qty(abs(b[1]-c[1]),units[1])", "description": "", "templateType": "anything", "can_override": false}, "M_E": {"name": "M_E", "group": "quantities", "definition": "qty(me,units[0]+\"*\"+units[1])", "description": "", "templateType": "anything", "can_override": false}, "sigma_f": {"name": "sigma_f", "group": "vectors", "definition": "vecW+vecA+vecC + vecD", "description": "", "templateType": "anything", "can_override": false}, "B": {"name": "B", "group": "Ungrouped variables", "definition": "vector(random(3..5),random(3..5))", "description": "location of pin B
", "templateType": "anything", "can_override": false}, "vecD": {"name": "vecD", "group": "vectors", "definition": "vector(scalar(f_d),0)", "description": "", "templateType": "anything", "can_override": false}, "w": {"name": "w", "group": "Ungrouped variables", "definition": "0//random(100..500#25)", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "quantities", "definition": "qty(B[1],units[1])", "description": "", "templateType": "anything", "can_override": false}, "beta": {"name": "beta", "group": "quantities", "definition": "degrees(angle(vector(-1,0),B-C))", "description": "", "templateType": "anything", "can_override": false}, "units": {"name": "units", "group": "Ungrouped variables", "definition": "random(['N','m'],['lb','ft'])", "description": "", "templateType": "anything", "can_override": false}, "Bx": {"name": "Bx", "group": "quantities", "definition": "qty(detx/det,units[0])", "description": "", "templateType": "anything", "can_override": false}, "description": {"name": "description", "group": "quantities", "definition": "display(abs(F_d)) + \" force $D$ at the midpoint of member AB and\"+\n display(abs(M_E)) + if(me>0,\" counter-\",\" \") + \"clockwise moment $M_E$ \"", "description": "", "templateType": "anything", "can_override": false}, "detx": {"name": "detx", "group": "quantities", "definition": "det(matrix(\n [fd scalar(y1)/2 ,scalar(x1)],\n [- me ,scalar(x2)]\n))", "description": "", "templateType": "anything", "can_override": false}, "By": {"name": "By", "group": "quantities", "definition": "qty(dety/det,units[0])", "description": "", "templateType": "anything", "can_override": false}, "vecA": {"name": "vecA", "group": "vectors", "definition": "-(vecD+VecC)", "description": "reactions at A for both versions as a vector
", "templateType": "anything", "can_override": false}, "C": {"name": "C", "group": "Ungrouped variables", "definition": "vector(B[0]+ random(3..5),random(-4..4 except 0))", "description": "Location of pin C. Pin A is at (0,0)
", "templateType": "anything", "can_override": false}, "ggb_load": {"name": "ggb_load", "group": "Ungrouped variables", "definition": "[['fd',fd],['me',me],['w',0]]", "description": "This will select either the force or the moment, but not both. Weight is always zero.
\n\n", "templateType": "anything", "can_override": false}, "debug": {"name": "debug", "group": "Ungrouped variables", "definition": "true", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "B[1] > C[1] ", "maxRuns": 100}, "ungrouped_variables": ["B", "C", "fd", "me", "w", "units", "ggb_load", "debug"], "variable_groups": [{"name": "quantities", "variables": ["F_w", "F_d", "M_E", "alpha", "beta", "x1", "y1", "x2", "y2", "description", "Cy", "Cx", "Bx", "By", "det", "detx", "dety"]}, {"name": "vectors", "variables": ["vecW", "vecA", "vecC", "vecD", "sigma_f"]}], "functions": {"display": {"parameters": [["Q", "quantity"]], "type": "string", "language": "jme", "definition": "string(siground(q,4))"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$A_x = $ [[0]] $A_y = $ [[1]] $C_x = $ [[2]] $C_y = $ [[3]]
", "gaps": [{"type": "engineering-answer", "useCustomName": true, "customName": "$A_x$", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(vecA[0],units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "$A_y$", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(vecA[1],units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "$C_x$", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(vecC[0],units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}, {"type": "engineering-answer", "useCustomName": true, "customName": "$C_y$", "marks": "5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "settings": {"correctAnswer": "qty(vecC[1],units[0])", "right": "0.2", "close": "1.0", "C1": "75", "C2": "50", "C3": "25"}}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}]}], "contributors": [{"name": "William Haynes", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2530/"}]}