// Numbas version: finer_feedback_settings {"name": "Clodagh's copy of Cross product", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "
\\[ \\begin{eqnarray*} \\boldsymbol{a\\times b}&=& \\begin{vmatrix} \\boldsymbol{i} & \\boldsymbol{j} &\\boldsymbol{k}\\\\ \\var{a} & \\var{b} & \\var{g}\\\\ \\var{c} & \\var{d} & \\var{f} \\end{vmatrix}\\\\ \\\\ &=&\\simplify[]{({b}*{f}-{g}*{d})v:i + ({g}*{c} - {a}*{f})v:j+({a}*{d}-{b}*{c})v:k}\\\\ \\\\ &=&\\simplify[std]{{b*f-g*d}v:i+{g*c-a*f}v:j+{a*d-b*c}v:k} \\end{eqnarray*} \\]
", "name": "Clodagh's copy of Cross product", "extensions": [], "statement": "Given the vectors:
\\[{\\bf a}=\\simplify[all,!noLeadingMinus]{{a} v:i+{b}v:j+{g}v:k},\\;\\;\\;{\\bf b}=\\simplify[all,!noLeadingMinus]{{c}v:i+{d}v:j+{f}v:k}\\]
answer the following question:
", "preamble": {"js": "", "css": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"s3": {"definition": "random(1,-1)", "group": "Ungrouped variables", "description": "", "name": "s3", "templateType": "anything"}, "inner": {"definition": "{a*c+b*d+f*g}", "group": "Ungrouped variables", "description": "", "name": "inner", "templateType": "anything"}, "a": {"definition": "s1*random(2..9)", "group": "Ungrouped variables", "description": "", "name": "a", "templateType": "anything"}, "s4": {"definition": "random(1,-1)", "group": "Ungrouped variables", "description": "", "name": "s4", "templateType": "anything"}, "s5": {"definition": "random(1,-1)", "group": "Ungrouped variables", "description": "", "name": "s5", "templateType": "anything"}, "d": {"definition": "s4*random(2..9)", "group": "Ungrouped variables", "description": "", "name": "d", "templateType": "anything"}, "s2": {"definition": "random(1,-1)", "group": "Ungrouped variables", "description": "", "name": "s2", "templateType": "anything"}, "s1": {"definition": "random(1,-1)", "group": "Ungrouped variables", "description": "", "name": "s1", "templateType": "anything"}, "b": {"definition": "s2*random(2..9)", "group": "Ungrouped variables", "description": "", "name": "b", "templateType": "anything"}, "g": {"definition": "s1*random(2..9)", "group": "Ungrouped variables", "description": "", "name": "g", "templateType": "anything"}, "c": {"definition": "s3*random(2..9)", "group": "Ungrouped variables", "description": "", "name": "c", "templateType": "anything"}, "f": {"definition": "random(2..9)", "group": "Ungrouped variables", "description": "", "name": "f", "templateType": "anything"}}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "s3", "s2", "s1", "s5", "s4", "inner"], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Given vectors $\\boldsymbol{a,\\;b}$, find $\\boldsymbol{a\\times b}$
\nrebelmaths
"}, "functions": {}, "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"extendBaseMarkingAlgorithm": true, "prompt": "Find ${{\\bf a}\\times {\\bf b}} =\\;\\;$ [[0]]${\\bf i}+ $[[1]]${\\bf j}+ $[[2]]${\\bf k}$
", "showCorrectAnswer": true, "customMarkingAlgorithm": "", "gaps": [{"extendBaseMarkingAlgorithm": true, "unitTests": [], "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "minValue": "{b*f-g*d}", "showCorrectAnswer": true, "correctAnswerStyle": "plain", "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "marks": 6, "maxValue": "{b*f-g*d}", "type": "numberentry", "scripts": {}, "showFeedbackIcon": true, "mustBeReduced": false, "correctAnswerFraction": false, "allowFractions": false, "variableReplacements": []}, {"extendBaseMarkingAlgorithm": true, "unitTests": [], "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "minValue": "{g*c-a*f}", "showCorrectAnswer": true, "correctAnswerStyle": "plain", "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "marks": 6, "maxValue": "{g*c-a*f}", "type": "numberentry", "scripts": {}, "showFeedbackIcon": true, "mustBeReduced": false, "correctAnswerFraction": false, "allowFractions": false, "variableReplacements": []}, {"extendBaseMarkingAlgorithm": true, "unitTests": [], "mustBeReducedPC": 0, "notationStyles": ["plain", "en", "si-en"], "minValue": "{a*d-b*c}", "showCorrectAnswer": true, "correctAnswerStyle": "plain", "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "marks": 6, "maxValue": "{a*d-b*c}", "type": "numberentry", "scripts": {}, "showFeedbackIcon": true, "mustBeReduced": false, "correctAnswerFraction": false, "allowFractions": false, "variableReplacements": []}], "variableReplacementStrategy": "originalfirst", "unitTests": [], "marks": 0, "type": "gapfill", "scripts": {}, "showFeedbackIcon": true, "sortAnswers": false, "variableReplacements": []}], "tags": [], "variable_groups": [], "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}]}