// Numbas version: finer_feedback_settings {"name": "linear equations: one step: (+,-)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["a", "b", "ans1", "c", "d", "ans2", "g", "f", "ans3", "h", "j", "ans4"], "advice": "", "parts": [{"gaps": [{"correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "type": "numberentry", "unitTests": [], "variableReplacements": [], "minValue": "{ans1}", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "allowFractions": false, "mustBeReduced": false, "scripts": {}, "marks": 1, "maxValue": "{ans1}", "showCorrectAnswer": true, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true}], "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "unitTests": [], "variableReplacements": [], "steps": [{"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "prompt": "
Given $x+\\var{a}=\\var{b}$, we subtract $\\var{a}$ from both sides to get $x$ by itself.
\n\n| $x+\\var{a}$ | \n$=$ | \n$\\var{b}$ | \n
| $x+\\var{a}-\\var{a}$ | \n$=$ | \n$\\var{b}-\\var{a}$ | \n
| $x$ | \n$=$ | \n$\\var{ans1}$ | \n
Given $x+\\var{a}=\\var{b}$, we can rearrange the equation to that find $x=$ [[0]].
", "scripts": {}, "marks": 0, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true}, {"gaps": [{"correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "type": "numberentry", "unitTests": [], "variableReplacements": [], "minValue": "{ans2}", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "allowFractions": false, "mustBeReduced": false, "scripts": {}, "marks": 1, "maxValue": "{ans2}", "showCorrectAnswer": true, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true}], "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "unitTests": [], "variableReplacements": [], "steps": [{"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "prompt": "Given $y-\\var{c}=\\var{d}$, we add $\\var{c}$ to both sides to get $y$ by itself.
\n\n| $y-\\var{c}$ | \n$=$ | \n$\\var{d}$ | \n
| $y-\\var{c}+\\var{c}$ | \n$=$ | \n$\\var{d}+\\var{c}$ | \n
| $y$ | \n$=$ | \n$\\var{ans2}$ | \n
Given $y-\\var{c}=\\var{d}$, $y=$ [[0]].
", "scripts": {}, "marks": 0, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true}, {"gaps": [{"correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "type": "numberentry", "unitTests": [], "variableReplacements": [], "minValue": "{ans3}", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "allowFractions": false, "mustBeReduced": false, "scripts": {}, "marks": 1, "maxValue": "{ans3}", "showCorrectAnswer": true, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true}], "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "unitTests": [], "variableReplacements": [], "steps": [{"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "prompt": "Given $\\var{f}+z=\\var{g}$, we subtract $\\var{f}$ from both sides to get $z$ by itself.
\n\n| $\\var{f}+z$ | \n$=$ | \n$\\var{g}$ | \n
| $\\simplify[basic]{{f}+z-{f}}$ | \n$=$ | \n$\\simplify[basic]{{g}-{f}}$ | \n
| $z$ | \n$=$ | \n$\\var{ans3}$ | \n
Rearrange $\\var{f}+z=\\var{g}$ to determine the value of $z$.
\n$z=$ [[0]]
", "scripts": {}, "marks": 0, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true}, {"gaps": [{"correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "type": "numberentry", "unitTests": [], "variableReplacements": [], "minValue": "{ans4}", "showFeedbackIcon": true, "customMarkingAlgorithm": "", "allowFractions": false, "mustBeReduced": false, "scripts": {}, "marks": 1, "maxValue": "{ans4}", "showCorrectAnswer": true, "mustBeReducedPC": 0, "extendBaseMarkingAlgorithm": true}], "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "unitTests": [], "variableReplacements": [], "steps": [{"customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "prompt": "Given $\\var{h}=\\var{j}+a$, we subtract $\\var{j}$ from both sides to get $a$ by itself.
\n\n| $\\var{h}$ | \n$=$ | \n$\\var{j}+a$ | \n
| $\\simplify[basic]{{h}-{j}}$ | \n$=$ | \n$\\simplify[basic]{{j}+a-{j}}$ | \n
| $\\var{ans4}$ | \n$=$ | \n$a$ | \n
| $a$ | \n$=$ | \n$\\var{ans4}$ | \n
Solve $\\var{h}=\\var{j}+a$ for $a$.
\n$a=$ [[0]]
", "scripts": {}, "marks": 0, "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true}], "preamble": {"js": "", "css": ""}, "tags": [], "rulesets": {}, "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "variable_groups": [], "extensions": [], "variables": {"d": {"description": "", "templateType": "anything", "definition": "random(-12..12 except [0,c,-c])", "group": "Ungrouped variables", "name": "d"}, "c": {"description": "", "templateType": "anything", "definition": "random(2..40)", "group": "Ungrouped variables", "name": "c"}, "b": {"description": "", "templateType": "anything", "definition": "random(-40..40 except [0,a])", "group": "Ungrouped variables", "name": "b"}, "a": {"description": "", "templateType": "anything", "definition": "random(1..12)", "group": "Ungrouped variables", "name": "a"}, "j": {"description": "", "templateType": "anything", "definition": "random(-25..25 except [0,h])", "group": "Ungrouped variables", "name": "j"}, "g": {"description": "", "templateType": "anything", "definition": "random(-25..25 except 0)", "group": "Ungrouped variables", "name": "g"}, "ans2": {"description": "", "templateType": "anything", "definition": "c+d", "group": "Ungrouped variables", "name": "ans2"}, "ans4": {"description": "", "templateType": "anything", "definition": "h-j", "group": "Ungrouped variables", "name": "ans4"}, "h": {"description": "", "templateType": "anything", "definition": "random(-25..25 except [0])", "group": "Ungrouped variables", "name": "h"}, "ans3": {"description": "", "templateType": "anything", "definition": "g-f", "group": "Ungrouped variables", "name": "ans3"}, "f": {"description": "", "templateType": "anything", "definition": "random(-25..25 except [0,g])", "group": "Ungrouped variables", "name": "f"}, "ans1": {"description": "", "templateType": "anything", "definition": "b-a", "group": "Ungrouped variables", "name": "ans1"}}, "name": "linear equations: one step: (+,-)", "statement": "", "variablesTest": {"condition": "", "maxRuns": "100"}, "functions": {}, "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "heike hoffmann", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2960/"}]}