// Numbas version: finer_feedback_settings {"name": "Solving linear equations: two step", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"css": "", "js": ""}, "variables": {"q": {"templateType": "anything", "definition": "random(-12..12 except [0,1,-1])", "name": "q", "group": "Ungrouped variables", "description": ""}, "t": {"templateType": "anything", "definition": "random([13,11,7,5,3,2] except s)", "name": "t", "group": "Ungrouped variables", "description": ""}, "ans3": {"templateType": "anything", "definition": "(k+j)*h", "name": "ans3", "group": "Ungrouped variables", "description": ""}, "ans5": {"templateType": "anything", "definition": "p/q-r", "name": "ans5", "group": "Ungrouped variables", "description": ""}, "ans6": {"templateType": "anything", "definition": "u*t/s", "name": "ans6", "group": "Ungrouped variables", "description": ""}, "u": {"templateType": "anything", "definition": "random(-12..12 except 0)", "name": "u", "group": "Ungrouped variables", "description": ""}, "g": {"templateType": "anything", "definition": "random(-12..12 except [0])", "name": "g", "group": "Ungrouped variables", "description": ""}, "a": {"templateType": "anything", "definition": "random(-12..12 except [0,-1,1])", "name": "a", "group": "Ungrouped variables", "description": ""}, "r": {"templateType": "anything", "definition": "random(1..12)", "name": "r", "group": "Ungrouped variables", "description": ""}, "l": {"templateType": "anything", "definition": "random(2..12)", "name": "l", "group": "Ungrouped variables", "description": ""}, "ans1": {"templateType": "anything", "definition": "(c-b)/a", "name": "ans1", "group": "Ungrouped variables", "description": ""}, "k": {"templateType": "anything", "definition": "random(-13..0 except -j)", "name": "k", "group": "Ungrouped variables", "description": ""}, "j": {"templateType": "anything", "definition": "random(2..12 except [h])", "name": "j", "group": "Ungrouped variables", "description": ""}, "p": {"templateType": "anything", "definition": "random(-12..12 except[0,q])", "name": "p", "group": "Ungrouped variables", "description": ""}, "f": {"templateType": "anything", "definition": "random(list(2..12)+[100])", "name": "f", "group": "Ungrouped variables", "description": ""}, "h": {"templateType": "anything", "definition": "random(list(2..12)+[20,50,100,200])", "name": "h", "group": "Ungrouped variables", "description": ""}, "n": {"templateType": "anything", "definition": "random(-12..12)", "name": "n", "group": "Ungrouped variables", "description": ""}, "ans4": {"templateType": "anything", "definition": "n*m+l", "name": "ans4", "group": "Ungrouped variables", "description": ""}, "ans2": {"templateType": "anything", "definition": "(g-d)/(-f)", "name": "ans2", "group": "Ungrouped variables", "description": ""}, "b": {"templateType": "anything", "definition": "random(2..12 except a)", "name": "b", "group": "Ungrouped variables", "description": ""}, "m": {"templateType": "anything", "definition": "random(2..12 except l)", "name": "m", "group": "Ungrouped variables", "description": ""}, "c": {"templateType": "anything", "definition": "random(-12..12 except [0,b])", "name": "c", "group": "Ungrouped variables", "description": ""}, "d": {"templateType": "anything", "definition": "random(1..12 except [f,g])", "name": "d", "group": "Ungrouped variables", "description": ""}, "s": {"templateType": "anything", "definition": "random([-13,-11,-7,-5,-3,-2,13,11,7,5,3,2])", "name": "s", "group": "Ungrouped variables", "description": ""}}, "advice": "", "functions": {}, "rulesets": {}, "parts": [{"extendBaseMarkingAlgorithm": true, "marks": 0, "showFeedbackIcon": true, "sortAnswers": false, "stepsPenalty": "0", "variableReplacementStrategy": "originalfirst", "prompt": "
Given $\\var{a}x+\\var{b}=\\var{c}$, solving for $x$ gives $x=$ [[0]].
", "customMarkingAlgorithm": "", "scripts": {}, "type": "gapfill", "variableReplacements": [], "steps": [{"marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacements": [], "prompt": "Given $\\var{a}x+\\var{b}=\\var{c}$, we can subtract $\\var{b}$ from both sides to get $\\var{a}x$ by itself, and then divide both sides by $\\var{a}$ to get $x$ by itself.
\n\n$\\var{a}x+\\var{b}$ | \n$=$ | \n$\\var{c}$ | \n
\n | \n | \n |
$\\var{a}x+\\var{b}-\\var{b}$ | \n$=$ | \n$\\var{c}-\\var{b}$ | \n
\n | \n | \n |
$\\var{a}x$ | \n$=$ | \n$\\var{c-b}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{a}x}{\\var{a}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{c-b}}{\\var{a}}}$ | \n
\n | \n | \n |
$x$ | \n$=$ | \n$\\displaystyle{\\simplify{{c-b}/{a}}}$ | \n
Given $\\var{d}-\\var{f}y=\\var{g}$, $y=$ [[0]].
", "customMarkingAlgorithm": "", "scripts": {}, "type": "gapfill", "variableReplacements": [], "steps": [{"marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacements": [], "prompt": "Given $\\var{d}-\\var{f}y=\\var{g}$, we can subtract $\\var{d}$ from both sides to get $-\\var{f}y$ by itself, and then divide both sides by $-\\var{f}$ to get $y$ by itself.
\n\n$\\var{d}-\\var{f}y$ | \n$=$ | \n$\\var{g}$ | \n
\n | \n | \n |
$\\var{d}-\\var{f}y-\\var{d}$ | \n$=$ | \n$\\var{g}-\\var{d}$ | \n
\n | \n | \n |
$-\\var{f}y$ | \n$=$ | \n$\\var{g-d}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{-f}y}{\\var{-f}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{g-d}}{\\var{-f}}}$ | \n
\n | \n | \n |
$y$ | \n$=$ | \n$\\displaystyle{\\simplify{{g-d}/{-f}}}$ | \n
Rearrange $\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}=\\var{k}$ to determine the value of $z$.
\n$z=$ [[0]]
", "customMarkingAlgorithm": "", "scripts": {}, "type": "gapfill", "variableReplacements": [], "steps": [{"marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacements": [], "prompt": "Given $\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}=\\var{k}$, we add $\\var{j}$ to both sides to get $\\displaystyle{\\frac{z}{\\var{h}}}$ by itself and then multiply both sides by $\\var{h}$ to get $z$ by itself.
\n$\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}$ | \n$=$ | \n$\\var{k}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{z}{\\var{h}}}-\\var{j}+\\var{j}$ | \n$=$ | \n$\\var{k}+\\var{j}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{z}{\\var{h}}}$ | \n$=$ | \n$\\var{k+j}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{z}{\\var{h}}\\times\\var{h}}$ | \n$=$ | \n$\\var{k+j}\\times \\var{h}$ | \n
\n | \n | \n |
$z$ | \n$=$ | \n$\\var{ans3}$ | \n
Solve $\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}=\\var{n}$ for $a$.
\n$a=$ [[0]]
", "customMarkingAlgorithm": "", "scripts": {}, "type": "gapfill", "variableReplacements": [], "steps": [{"marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacements": [], "prompt": "Given $\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}=\\var{n}$, we can multiply both sides by $\\var{m}$ to get $a-\\var{l}$ by itself and then add $\\var{l}$ to both sides to get $a$ by itself.
\n$\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}$ | \n$=$ | \n$\\var{n}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{a-\\var{l}}{\\var{m}}}\\times \\var{m}$ | \n$=$ | \n$\\var{n}\\times\\var{m}$ | \n
\n | \n | \n |
$a-\\var{l}$ | \n$=$ | \n$\\var{n*m}$ | \n
\n | \n | \n |
$a-\\var{l}+\\var{l}$ | \n$=$ | \n$\\var{n*m}+\\var{l}$ | \n
\n | \n | \n |
$a$ | \n$=$ | \n$\\var{ans4}$ | \n
Solve $\\var{p}=\\var{q}(\\var{r}+b)$.
\n$b=$ [[0]]
", "customMarkingAlgorithm": "", "scripts": {}, "type": "gapfill", "variableReplacements": [], "steps": [{"marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacements": [], "prompt": "Given $\\var{p}=\\var{q}(\\var{r}+b)$, we can divide both sides by $\\var{q}$ to get $\\var{r}+b$ by itself and then subtract $\\var{r}$ from both sides to get $b$ by itself.
\n$\\var{p}$ | \n$=$ | \n$\\var{q}(\\var{r}+b)$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{p}}{\\var{q}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{q}(\\var{r}+b)}{\\var{q}}}$ | \n
\n | \n | \n |
$\\displaystyle{\\simplify{{p}/{q}}}$ | \n$=$ | \n$\\var{r}+b$ | \n
\n | \n | \n |
$\\displaystyle{\\simplify{{p}/{q}}}-\\var{r}$ | \n$=$ | \n$\\var{r}+b-\\var{r}$ | \n
\n | \n | \n |
$\\displaystyle{\\simplify{{p-r*q}/{q}}}$ | \n$=$ | \n$b$ | \n
\n | \n | \n |
$b$ | \n$=$ | \n$\\displaystyle{\\simplify{{p-r*q}/{q}}}$ | \n
Solve $\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}=\\var{u}$.
\n$w=$ [[0]]
", "customMarkingAlgorithm": "", "scripts": {}, "type": "gapfill", "variableReplacements": [], "steps": [{"marks": 0, "extendBaseMarkingAlgorithm": true, "scripts": {}, "variableReplacements": [], "prompt": "Given $\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}=\\var{u}$, we can multiply both sides by $\\var{t}$ to get $\\var{s}w$ by itself and then divide both sides by $\\var{s}$ to get $w$ by itself.
\n$\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}$ | \n$=$ | \n$\\var{u}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{s}w}{\\var{t}}}\\times\\var{t}$ | \n$=$ | \n$\\var{u}\\times\\var{t}$ | \n
\n | \n | \n |
$\\var{s}w$ | \n$=$ | \n$\\var{u*t}$ | \n
\n | \n | \n |
$\\displaystyle{\\frac{\\var{s}w}{\\var{s}}}$ | \n$=$ | \n$\\displaystyle{\\frac{\\var{u*t}}{\\var{s}}}$ | \n
\n | \n | \n |
$w$ | \n$=$ | \n$\\displaystyle{\\simplify{{u*t}/{s}}}$ | \n