// Numbas version: finer_feedback_settings {"name": "CLE6. True false", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "CLE6. True false", "rulesets": {}, "ungrouped_variables": [], "parts": [{"answers": ["
True
", "False
"], "showFeedbackIcon": true, "marks": 0, "type": "m_n_x", "customMarkingAlgorithm": "", "matrix": "{marks}", "variableReplacementStrategy": "originalfirst", "scripts": {}, "variableReplacements": [], "unitTests": [], "choices": "{statements}", "shuffleAnswers": false, "showCorrectAnswer": true, "prompt": "Which of the following are true and which are false? If you are unsure of something, find out the answer instead of guessing. A single error will result in a score 0 for the whole question. If you are unable to find out or understand the answer, you are welcome to ask me for help or advice.
", "shuffleChoices": true, "maxAnswers": 0, "layout": {"type": "all", "expression": ""}, "showCellAnswerState": true, "minAnswers": "{n}", "minMarks": 0, "displayType": "radiogroup", "warningType": "none", "maxMarks": "0", "extendBaseMarkingAlgorithm": true}], "tags": [], "preamble": {"js": "", "css": ""}, "variables": {"n_true": {"name": "n_true", "group": "do not change these", "definition": "random(1..n-1)", "description": "", "templateType": "anything"}, "statements_false": {"name": "statements_false", "group": "change these", "definition": "[\"$\\\\log(a+b) = \\\\log(a)+\\\\log(b)$\",\n \"$\\\\log(ab) \\\\neq \\\\log(a) + \\\\log(b)$\",\n \"$\\\\log(a)-\\\\log(b) = \\\\log(a-b)$\",\n \"$-\\\\log(\\\\frac{a}{b}) \\\\neq \\\\log(\\\\frac{b}{a})$\",\n \"$\\\\frac{\\\\log(a)}{\\\\log(b)} = \\\\log_a(b)$\",\n \"$e^{a+b} = e^{a} + e^{b}$\",\n \"$(e^a)^b \\\\neq e^{ab}$\",\n \"$\\\\sin(0)=1 $\",\n \"$\\\\cos(0)=0 $\",\n \"$\\\\sin(\\\\pi)=-1$\",\n \"$\\\\cos(\\\\pi)=0 $\",\n \"$\\\\sin(\\\\frac{\\\\pi}{2})=0$\",\n \"$\\\\cos(\\\\frac{\\\\pi}{2})=1 $\",\n \"Starting from $(1,0)$, if you rotate by an angle of $\\\\theta$ anti-clockwise, the $x$-coordinate is $\\\\sin(\\\\theta)$\",\n \"When finding an angle using the sine rule, there is nothing significant to watch out for\"\n]", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "change these", "definition": "random(3..7)", "description": "", "templateType": "anything"}, "marks": {"name": "marks", "group": "do not change these", "definition": "matrix(map(if(rand[j]=1,[max_mark/n,-max_mark],[-max_mark,max_mark/n]),j,0..n-1))\n", "description": "", "templateType": "anything"}, "statements": {"name": "statements", "group": "do not change these", "definition": "map(if(rand[j]=1,\n statements_true[j],\n statements_false[j]),j,0..n-1)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "change these", "definition": "random(10..18)+random(1..9)/10", "description": "", "templateType": "anything"}, "rand": {"name": "rand", "group": "do not change these", "definition": "vector(map(digits[n_true+19-j],j,0..(n-1)))", "description": "", "templateType": "anything"}, "max_mark": {"name": "max_mark", "group": "change these", "definition": "10", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "change these", "definition": "random(6..9)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "change these", "definition": "15", "description": "", "templateType": "anything"}, "statements_true": {"name": "statements_true", "group": "change these", "definition": "[\"$\\\\log(a+b) \\\\neq \\\\log(a)+\\\\log(b)$\",\n \"$\\\\log(ab) = \\\\log(a)+\\\\log(b)$\",\n \"$\\\\log(a)-\\\\log(b) = \\\\log(\\\\frac{a}{b})$\",\n \"$-\\\\log(\\\\frac{a}{b}) = \\\\log(\\\\frac{b}{a})$\",\n \"$\\\\frac{\\\\log(a)}{\\\\log(b)} \\\\neq \\\\log(\\\\frac{a}{b})$\",\n \"$e^{a+b} \\\\neq e^{a} + e^{b}$\",\n \"$(e^a)^b = e^{ab}$\",\n \"$\\\\sin(0)=0 $\",\n \"$\\\\cos(0)=1 $\",\n \"$\\\\sin(\\\\pi)=0$\",\n \"$\\\\cos(\\\\pi)=-1 $\",\n \"$\\\\sin(\\\\frac{\\\\pi}{2})=1$\",\n \"$\\\\cos(\\\\frac{\\\\pi}{2})=0 $\",\n \"Starting from $(1,0)$, if you rotate by an angle of $\\\\theta$ anti-clockwise, the $x$-coordinate is $\\\\cos(\\\\theta)$\",\n \"When finding an angle using the sine rule, you have to think about if the angle is bigger or smaller than $90^{\\\\circ}$\"\n]\n ", "description": "", "templateType": "anything"}, "digits": {"name": "digits", "group": "do not change these", "definition": "map(0,j,0..19)+map(1,j,0..19)", "description": "", "templateType": "anything"}}, "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "15 questions based on module so far.
"}, "variable_groups": [{"name": "change these", "variables": ["statements_true", "statements_false", "max_mark", "n", "a", "b", "c"]}, {"name": "do not change these", "variables": ["n_true", "digits", "rand", "statements", "marks"]}], "statement": "This is a non-calculator question.
", "extensions": [], "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "See all the lectures and workshops from Week 0 to Week 3 and the module handbook.
", "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}