// Numbas version: exam_results_page_options {"name": "Geometry: trig on unit circle, short", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"extensions": ["jsxgraph"], "tags": [], "variables": {"angle": {"templateType": "anything", "group": "Ungrouped variables", "name": "angle", "definition": "[a]+shuffle([-a,180+a])+shuffle([360-a,180-a,90-a])", "description": "

The slope of the line.

"}, "x": {"templateType": "anything", "group": "Ungrouped variables", "name": "x", "definition": "[cos(angle[0]/180*pi),\ncos(angle[1]/180*pi),\ncos(angle[3]/180*pi)]", "description": "

The y-intercept.

"}, "y": {"templateType": "anything", "group": "Ungrouped variables", "name": "y", "definition": "[sin(angle[0]/180*pi),\nsin(angle[1]/180*pi),\nsin(angle[3]/180*pi)]", "description": ""}, "a": {"templateType": "anything", "group": "Ungrouped variables", "name": "a", "definition": "random([13,14,15,16,17,-4,-5,-6,22,24,25])*10+random(1..9)", "description": ""}}, "variablesTest": {"maxRuns": 100, "condition": ""}, "functions": {"dragpointa": {"type": "html", "parameters": [["x0", "number"], ["y0", "number"]], "language": "javascript", "definition": "// set up the board\nvar div = Numbas.extensions.jsxgraph.makeBoard('500px','500px',{boundingBox:[-1.2,1.2,1.2,-1.2],grid:true,labels:true});\nvar board = div.board;\n\n\n//plot circle of radius 1 centred at origin\nboard.create('functiongraph',\n [function(x){ return Math.sqrt(1-x*x)},-1,1]);\nboard.create('functiongraph',\n [function(x){ return -1*Math.sqrt(1-x*x)},-1,1]);\n\n\n\nvar a = board.create('point',[x0,y0],{size:3});\na.setProperty({fixed:true});\n\n//var b = board.create('point',[-0.2,0],{size:3});\n//var c = board.create('point',[0.2,0],{size:3});\n//var d = board.create('point',[0.4,0],{size:3});\n\n//b.on('drag',function(){\n// var x0 = Numbas.math.niceNumber(b.X());\n// var y0 = Numbas.math.niceNumber(b.Y());\n// Numbas.exam.currentQuestion.parts[0].gaps[2].display.studentAnswer(y0);\n// Numbas.exam.currentQuestion.parts[0].gaps[3].display.studentAnswer(x0);\n//});\n//c.on('drag',function(){\n// var x0 = Numbas.math.niceNumber(c.X());\n// var y0 = Numbas.math.niceNumber(c.Y());\n// Numbas.exam.currentQuestion.parts[0].gaps[6].display.studentAnswer(y0);\n// Numbas.exam.currentQuestion.parts[0].gaps[7].display.studentAnswer(x0);\n//});\n//d.on('drag',function(){\n// var x0 = Numbas.math.niceNumber(d.X());\n// var y0 = Numbas.math.niceNumber(d.Y());\n// Numbas.exam.currentQuestion.parts[0].gaps[6].display.studentAnswer(y0);\n// Numbas.exam.currentQuestion.parts[0].gaps[7].display.studentAnswer(x0);\n//});\n\nreturn div;\n\n\n"}}, "preamble": {"js": "", "css": ""}, "ungrouped_variables": ["a", "angle", "x", "y"], "metadata": {"description": "

$x$ is given and (sin(x),cos(x)) is plotted on a unit circle.  Then the student is asked to determine sin(y) and cos(y), where y is closely related to x (e.g. y=-x, y=180+x, etc.)

{dragpointa(x[0],y[0])}

\n

\n

Use the diagram above to determine $\\sin(\\var{angle[0]}^{\\circ})$ and $\\cos(\\var{angle[0]}^{\\circ})$. To get to point $A$, we started at $(1,0)$ and rotated by $\\var{angle[0]}^{\\circ}$. If you hover the mouse over the point $A$, you will be shown its coordinates.

\n

\n

$\\sin(\\var{angle[0]}^{\\circ}) =$ [[0]]

\n

$\\cos(\\var{angle[0]}^{\\circ}) =$ [[1]]

\n

"}], "statement": "

This is a non-calculator question.

\n

-----------------------------------