// Numbas version: finer_feedback_settings {"name": "Michael's copy of STAT7008 Calculate probabilities from a normal distribution", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "tags": [], "variables": {"lower": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(m-1.5*s..m-0.5s#5)", "name": "lower"}, "prob1": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "precround(1-p,2)", "name": "prob1"}, "prob3": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "precround(p1-p2,2)", "name": "prob3"}, "prob2": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "precround(1-p1,2)", "name": "prob2"}, "amount": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "\"electricity consumption\"", "name": "amount"}, "p1": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "precround(normalcdf(zupper,0,1),4)", "name": "p1"}, "zupper": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "precround((upper-m)/s,2)", "name": "zupper"}, "upper": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(m+0.5s..m+1.5*s#5)", "name": "upper"}, "p2": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "1-p", "name": "p2"}, "s": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(60..100#10)", "name": "s"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "random(750..1250#50)", "name": "m"}, "zlower": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "precround((m-lower)/s,2)", "name": "zlower"}, "stuff": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "\"a frozen foods warehouse each week in the summer months \"", "name": "stuff"}, "tol": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "0.01", "name": "tol"}, "p": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "precround(normalcdf(zlower,0,1),4)", "name": "p"}, "units1": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "definition": "\"k Wh\"", "name": "units1"}}, "ungrouped_variables": ["units1", "upper", "lower", "p1", "m", "s", "zupper", "p", "amount", "p2", "tol", "zlower", "stuff", "prob2", "prob3", "prob1"], "statement": "

The {amount}, $X$, of {stuff}  is normally distributed with mean {m}{units1} and standard deviation {s}{units1}.

\n

 

", "extensions": ["stats"], "advice": "

1. Converting to $\\operatorname{N}(0,1)$

\n

$\\simplify[all,!collectNumbers]{P(X < {lower}) = P(Z < ({lower} -{m}) / {s})} = P(Z<-\\var{zlower})= \\var{prob1}$ to 2 decimal places.

\n

2. Converting to $\\operatorname{N}(0,1)$

\n

$\\simplify[all,!collectNumbers]{P(X > {upper}) = P(Z > ({upper} -{m}) / {s})} = P(Z>\\var{zupper}) = 1-P(Z<\\var{zupper})=1-\\var{p1} = \\var{prob2}$ to 2 decimal places.

\n

3.

\n

$\\simplify[all,!collectNumbers]{P({lower} < X < {upper}) = P(X < {upper})-P(X < {lower})}=P(Z<\\var{zupper})-P(Z<-\\var{zlower}) =\\var{p1}-\\var{p2} = \\var{prob3}$ to 2 decimal places.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"js": "", "css": ""}, "functions": {}, "parts": [{"gaps": [{"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "scripts": {}, "maxValue": "prob1+tol", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "unitTests": [], "minValue": "prob1-tol", "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showCorrectAnswer": true, "variableReplacements": [], "marks": "4", "customMarkingAlgorithm": "", "type": "numberentry"}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "scripts": {}, "maxValue": "prob2+tol", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "unitTests": [], "minValue": "prob2-tol", "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showCorrectAnswer": true, "variableReplacements": [], "marks": "4", "customMarkingAlgorithm": "", "type": "numberentry"}, {"allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "scripts": {}, "maxValue": "prob3+tol", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "unitTests": [], "minValue": "prob3-tol", "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "showCorrectAnswer": true, "variableReplacements": [], "marks": "4", "customMarkingAlgorithm": "", "type": "numberentry"}], "extendBaseMarkingAlgorithm": true, "prompt": "

Find the probability that in a particular week the {amount} is less than {lower} {units1}:

\n

Probability = ?[[0]](to 2  decimal places)

\n

Find the probability that in a particular week the {amount} is greater than {upper} {units1}:

\n

Probability = ?[[1]](to 2  decimal places)

\n

Find the probability that in a particular week the {amount} is between {lower}{units1} and {upper} {units1}:

\n

Probability = ?[[2]](to 2  decimal places)

", "scripts": {}, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "unitTests": [], "customMarkingAlgorithm": "", "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "sortAnswers": false, "type": "gapfill"}], "name": "Michael's copy of STAT7008 Calculate probabilities from a normal distribution", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

rebelmaths

\n

Given a random variable $X$  normally distributed as $\\operatorname{N}(m,\\sigma^2)$ find probabilities $P(X \\gt a),\\; a \\gt m;\\;\\;P(X \\lt b),\\;b \\lt m$.

"}, "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Michael Proudman", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/269/"}, {"name": "Catherine Palmer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/423/"}]}